Tuesday, October 16, 2018

Space Launch System Intertank completes functional testing

The intertank that will be flown on Exploration Mission-1 as part of NASA's new rocket, the Space Launch System, has completed its avionics functional testing, at the Michoud Assembly Center in New Orleans. The avionics, shown here inside the intertank structure, guide the vehicle and direct its power during flight. The intertank houses critical electronics that "talk to" the flight computers in the forward skirt. The intertank, forward skirt, two colossal fuel tanks and the engine section make up the massive core stage of the SLS rocket. The avionics units on the core stage work with the rocket's flight software to perform various functions during the first eight minutes of flight. Now that the intertank and forward skirt have passed avionics testing, they are ready to be mechanically joined and tested to verify they can successfully work together. To prepare for the first mission, engineers from Boeing, the prime contractor from Huntsville, Alabama, building the SLS core stage, are currently checking out the avionics systems for the entire rocket at the systems integration laboratory at NASA's Marshall Space Flight Center in Huntsville.


They are verifying that the core stage avionics can use the flight software to operate and communicate with all the parts of the rocket as well as to Orion and to ground control computers.

Monday, October 15, 2018

Practising for BepiColombo's epic escape to Mercury

The international BepiColombo spacecraft will soon take flight, on a complex journey to the innermost planet of the Solar System, Mercury. Encompassing nine planetary flybys and travelling a total distance of nine billion km over a period of seven years, this will be one of the most intricate journeys ever flown by mission teams at ESA's ESOC mission control centre. With launch set for 20 October, flight controllers led by Operations Manager Elsa Montagnon are now busily preparing for the start of what will be Europe's first mission to Mercury - the smallest and least explored terrestrial planet of the Solar System. "Mission teams have spent months simulating BepiColombo's unique and complex journey," explains Elsa. "Taking turns, in 12-hour shifts, we have been practising the spacecraft's various launch and early mission processes and manoeuvres in real-time so we are prepared for every possible eventuality." BepiColombo is a joint mission between ESA and the Japan Aerospace Exploration Agency (JAXA). The mission comprises two science orbiters: ESA's Mercury Planetary Orbiter (MPO) and JAXA's Mercury Magnetospheric Orbiter (MMO). The ESA-built Mercury Transfer Module (MTM) will carry the orbiters to Mercury using a combination of solar electric propulsion and gravity assist flybys.


After its arrival at the planet of extremes in 2025, it will spend at least a year in orbit gathering data on Mercury's composition, density, magnetic field and exosphere, as well as probing the planet's interaction with solar wind.

Before the science begins, however, the multi-module spacecraft has to safely escape Earth, switch on, and receive instructions from mission control on where to go next.

A rocky road

Europe's space scientists have identified BepiColombo as one of the most challenging long-term planetary projects ever flown, as Mercury's proximity to the Sun makes it difficult for spacecraft to reach without being pulled into the star's enormous gravity.

"To get to Mercury without being subsumed by our giant star, the spacecraft will make a series of nine planetary flybys; circling Earth once, Venus twice, and Mercury itself six times," explains Andrea Accomazzo, Flight Director for BepiColombo.

"Unlike missions that take spacecraft to the outer regions of the Solar System, the Mercury Transfer Module will use the gravity of these inner planets, in combination with the thrust provided by electric propulsion, to slow the spacecraft down."

The Sun's huge gravity field acts as an enormous gravity 'well'. Getting a spacecraft to Mercury, and therefore close to the Sun, means dropping it into this steep well - the difficulty comes in ensuring the spacecraft ends up at Mercury and not at our gigantic star.

"The closer we get to the Sun the more we are constricted in our path," explains Frank Budnik from the Flight Dynamics team.

"For example, BepiColombo's large solar arrays need to be tilted at just the right angle to get enough sunlight to power the high-energy demand of the propulsion system and keeping the spacecraft running. At the same time, they mustn't get too much sunlight, or they could be beyond their limits."

"There is only a small corridor in which the solar arrays can be operated to fulfil both of these constraints."

BepiColombo will launch at 01:45 GMT (03:45 CEST) on 20 October, on board an Ariane 5 rocket. After the spacecraft separates from the rocket's 'upper stage', teams at ESOC will take control, sending commands to the spacecraft to get it into normal operational mode - a process that is expected to take about four days.

This period, dubbed the 'Launch and Early Orbit Phase' (LEOP), sees the control systems and instruments switched on, and their health and proper functioning assessed.

This is a risky time when the satellite is unusually vulnerable - not yet fully functional but still exposed to the hazards of space.


Simulating the scene

In preparation for this vital period, mission control teams have spent months simulating every expected scenario - the perfect LEOP, launch and separation of the satellite from the launcher, as well as a whole host of scenarios in which something goes wrong.

Establishing contact between the spacecraft and mission controllers has also been rehearsed.

Deep space ground stations across three continents will support this mission, with ESA's global antenna network maintaining links to and from BepiColombo throughout the journey.

"BepiColombo is one of the world's most ambitious interplanetary missions, and it could not be in safer hands," says Rolf Densing, Director of Operations at ESOC.

"With decades of collective experience and hundreds of hours of simulation practice, teams at ESA's mission control are ready to set out for the rocky planet."

Sunday, October 14, 2018

Chandra X-ray Observatory goes into safe mode

It's been a bad couple weeks in space. A week ago, technical difficulties forced engineers to put the Hubble Space Telescope's science mission on hold. Now, the Chandra X-ray Observatory is in safe mode, too. In a statement released on Friday, NASA confirmed Chandra, one of the most powerful telescopes in space, transitioned to safe mode earlier this week. During safe mode, the observatory's mirrors are pointed away from the sun and its solar panels are turned directly toward the sun. The satellite's most critical hardware is transferred to backup drives. "Analysis of available data indicates the transition to safe mode was normal behavior for such an event," according to NASA. "All systems functioned as expected and the scientific instruments are safe." Engineers are still working to determine why Chandra went into safe mode. As Chandra's Twitter account reminded readers, the powerful X-ray telescope is getting up its in age: "Chandra is 19 years old, which is well beyond the original design lifetime of 5 years." In a separate release, NASA confirmed Hubble is still in safe mode. Last week, NASA and European Space Agency engineers suspended the telescopes' scientific activities after one of its gyroscopes failed. Scientists turned on a replacement gyro, but the backup didn't perform as hoped.


"This past week, tests were conducted to assess the condition of that backup gyro. The tests showed that the gyro is properly tracking Hubble's movement, but the rates reported are consistently higher than the true rates," according to NASA.

Because the gyro is reading rates of changes at a greater magnitude, it can't be used to monitor smaller changes. Normally, when fixed on an observation target, Hubble's gyros operate on low-mode.

"The extremely high rates currently being reported exceed the upper limit of the gyro in this low mode, preventing the gyro from reporting the spacecraft's small movements," NASA reported.

If followup troubleshooting efforts fail, Hubble will be forced to shut down all but a single gyroscope. Previous tests showed Hubble can conduct observation using a single gyro.

Hubble and Chandra aren't the only spacecraft in trouble. Earlier this week, NASA astronaut Nick Hague and Roscosmos cosmonaut Alexey Ovchinin were forced to abort their mission to the space station just moments after launch, ejecting their Soyuz capsule from the rocket and executing an emergency "ballistic descent."

And as NASA reported this week, the Mars rover Opportunity is still silent. Engineers haven't communicated with the rover for four months.

Friday, October 12, 2018

Test Launch of Russia's New Unmanned Space Vehicle Could Be Postponed

The first test launch of the unmanned version of Russia's new Federation spacecraft atop the new Soyuz-5 rocket has been suggested to be rescheduled from 2022 to 2023 after two test launches of the rocket with other spacecraft are held, a source in the aerospace industry told Sputnik Thursday. The unmanned version of Federation was initially set to be launched from Russia's Baikonur Cosmodrome atop Soyuz-5 in 2022, with the second test flight planned for 2023, when the spacecraft was set to dock to the International Space Station (ISS). The manned flight was expected to be held in 2024. However, in July, the Russian Space Corporation Roscosmos said that during its first launch in 2022, the Soyuz-5 rocket will not bring Federation to the orbit, as it had initially been planned, but would have another spacecraft atop of it. "According to the new schedule of the Soyuz-5 launches, which is being formed now, five launches of the new carrier rocket are planned to be held before 2025. The first launch is scheduled for mid-2022, the second launch is set for late 2022 ... "The launch of the unmanned version of the Federation spacecraft on the Soyuz-5 rocket is suggested to be held in 2023 after two test launches of the rocket are held," the source said.


It is still unclear which spacecraft the Soyuz-5 rocket will bring to space in 2022, according to the source. In mid- and late 2024, two more launches of Soyuz-5 rockets were planned to be held in order to bring an unmanned spacecraft and a crew to the ISS, the source added.

"Thus, the terms for the launch of the manned version of the Federation spacecraft, set for Roscosmos for 2024, remain," the source pointed out.

The Russian space agency has not, however, immediately responded for the comment. The Russian spacecraft manufacturer Energiya has been working on the Federation spacecraft, aiming to substitute Soyuz rockets, which have been used to bring crews to the ISS for over 50 years, since 2009.

Thursday, October 11, 2018

United Launch Alliance building rocket of the future with industry-leading strategic partnerships

United Launch Alliance's (ULA) next-generation rocket - the Vulcan Centaur - is making strong progress in development and is on track for its initial flight in mid-2020. The Vulcan Centaur rocket design leverages the proven success of the Delta IV and Atlas V launch vehicles while introducing advanced technologies and innovative features. "Vulcan Centaur will revolutionize spaceflight and provide affordable, reliable access to space for our current and future customers," said Tory Bruno, ULA's president and CEO. "We are well on our way to the introduction of Vulcan Centaur - the future of U.S. rocket manufacturing. With state-of-the-art engineering and manufacturing techniques, this rocket is designed specifically for low recurring cost." The new rocket design is nearing completion, and the booster preliminary design and critical design reviews have been completed. Vulcan Centaur will have a maximum liftoff thrust of 3.8 million pounds and carry 56,000 pounds to low Earth orbit, 33,000 pounds to a geo-transfer orbit and 16,000 pounds to geostationary orbit with greater capability than any currently available single-core launch vehicle. "Our new rocket will be superior in reliability, cost and capability - one system for all missions," said Bruno. "We have been working closely with the U.S. Air Force, and our certification plan is in place."


Following completion of a competitive procurement, ULA has selected Blue Origin's BE-4 engine for Vulcan Centaur's booster stage. The liquefied natural gas (LNG) fueled booster will be powered by a pair of BE-4 engines, each producing 550,000 pounds of sea level thrust. As previously announced, ULA has selected Aerojet Rocketdyne's RL10 engine for the Centaur upper stage, Northrop Grumman solid rocket boosters, L-3 Avionics Systems avionics, and RUAG's payload fairings and composite structures for the new Vulcan Centaur rocket system.

"We are pleased to enter into this partnership with Blue Origin and look forward to a successful first flight of our next-generation launch vehicle," said Bruno.

"We are very glad to have our BE-4 engine selected by United Launch Alliance. United Launch Alliance is the premier launch service provider for national security missions, and we're thrilled to be part of their team and that mission," said Blue Origin CEO Bob Smith. "We can't thank Tory Bruno and the entire United Launch Alliance team enough for entrusting our engine to powering the Vulcan rocket's first stage."

Vulcan Centaur will bolster U.S. manufacturing by adding to the more than 22,000 direct and indirect American jobs in 46 states supported by ULA programs.

"ULA has chosen the best systems available to create the Vulcan Centaur," said Bruno. "These engines and components will ensure ULA continues to lead the way in space exploration, maintain our record of success and remain America's launch vehicle for our nation's most vital missions."

Vulcan Centaur is ULA's next-generation, American rocket system. As a result of these agreements, the Vulcan Centaur will surpass current rocket capabilities and launch services at significantly lower costs, while still meeting the requirements of ULA's cooperative research and development agreement with the U.S. Air Force to certify the Vulcan Centaur for national security space missions.

"Strong partners are critical to the cutting-edge innovation that is leading us into the next generation in space and ensuring mission success," said Bruno. "Partnerships with Blue Origin, Aerojet Rocketdyne, Northrop Grumman, L-3 Avionics Systems and RUAG will allow the Vulcan Centaur to transform the future of space launch for the government and commercial markets, making launch more affordable, accessible and commercially available."