Saturday, March 30, 2019

Exoplanet satellite ready

ESA's Characterising Exoplanet Satellite, Cheops, was recently declared ready to fly after completing a series of final spacecraft tests. Cheops will lift off as a secondary passenger on a Soyuz-Fregat rocket launching from Europe's Spaceport in Kourou, French Guiana. The satellite will be stored at the Airbus Defence and Space facility in Madrid for a few months before being shipped to the launch site, targeting the launch time slot between 15 October and 14 November in 2019. "We are thrilled to be launching Cheops later this year," says Gunther Hasinger, ESA Director of Science. "With its ultra-high precision observations of stars that we already know to host exoplanets, the mission will enable a first-step characterisation of the composition and nature of planets beyond our Solar System." "It has taken over five years of work to get to this point, and we are within budget and fully on schedule, so we are extremely satisfied to see the satellite finally ready for flight," says Nicola Rando, ESA Cheops project manager. "Now that we can see the launch on the horizon, we congratulate all the teams involved for their excellent work," says Fernando Varela, Head of Space Systems of Airbus in Spain, the prime contractor for the design and construction of the spacecraft. Cheops is a follow-up mission: it will make observations of bright, exoplanet-hosting stars to measure small changes in their brightness due to the transit of a planet across the star's disc, targeting in particular stars hosting planets in the Earth-to-Neptune size range. Knowing when and where to point in the sky in order to catch these transits makes Cheops extremely efficient, maximising the time it spends monitoring actual transit events.


The transit observations will yield precise measurements of a planet's size. Combined with known information about the mass of the planet, these data will make it possible to determine its density, giving us vital clues about its composition and structure, indicating for example if it is predominantly rocky or gassy, or perhaps harbours significant oceans.

Observations of a list of exoplanet targets defined by the Cheops Science Team will account for 80% of the science observing time, while the remaining 20% will be available to scientists worldwide. The first call for proposals to use Cheops through the ESA-run Guest Observers Programme was published earlier this month.

"Cheops is ESA's first satellite dedicated to exoplanets, paving the way to two more missions in the coming decade and consolidating European leadership in exoplanet science," adds Director Hasinger.

Following in the steps of Cheops, ESA's Plato, the Planetary Transits and Oscillations of stars mission, and Ariel, the Atmospheric Remote-Sensing Infrared Exoplanet Large-survey mission, will be launched in the late 2020s to discover and further investigate new worlds around other stars.

Cheops is an ESA mission implemented in partnership with Switzerland, with important contributions from Austria, Belgium, France, Germany, Hungary, Italy, Portugal, Spain, Sweden, and the United Kingdom.

Wednesday, March 27, 2019

Tests Prove Out Orion Safety Systems From Liftoff to Splashdown

Engineers completed two key tests the week of March 18 to help ensure NASA's Orion spacecraft is ready from liftoff to splashdown for missions to the Moon. Teams successfully tested one of the motors on Orion's Launch Abort System responsible for taking the crew to safety in an emergency during launch, and completed testing at sea for the qualification of the system used to upright Orion after it lands in the ocean. At its facility in Elkton, Maryland, Northrop Grumman hot fired a motor for Orion's launch abort system. The attitude control motor is responsible for orienting the crew module for landing in the event that Orion's ride to space experiences a failure during launch or ascent. The motor is essential because it helps stabilize Orion and control its trajectory as it moves away from the rocket. During the 30-second test, the motor produced more than 7,000 pounds of thrust from eight valves. This test was the first in a series of evaluations aimed at qualifying the attitude control motor for crewed missions. Orion's launch abort system is positioned on top of the crew module and is designed to protect astronauts during their trip to space. It can activate within milliseconds to pull the crew module to safety if needed. It consists of three solid rocket motors: the abort motor that pulls the crew module away from a rocket, the attitude control motor that can steer Orion in any direction upon command, and the jettison motor that ignites to separate the launch abort system from the spacecraft so that Orion is free to deploy its parachutes to assist with landing.


Ensuring crew safety continues throughout the mission, including systems used to assist with returning astronauts to land. Off the coast of Atlantic Beach, North Carolina, engineers tested the crew module uprighting system (CMUS) to ensure the capsule can be oriented right-side up once it returns from its deep space missions.

When Orion splashes down in the ocean, it can settle in one of two positions. In the most ideal scenario, the capsule is oriented with the heat shield in the water and its windows and hatches out of the water. The crew module also could land with the top submerged in the water, and the heat shield facing the sky.

The CMUS deploys a series of five, bright orange airbags to flip the capsule right side up in the event the Orion lands upside down. It takes less than four minutes for the system to upright the capsule to help protect the astronauts inside that are returning home from future deep space missions.

In a perfect post-mission landing situation, all five of Orion's airbags will deploy to reorient the capsule, and while this is the most likely scenario for capsule recovery, NASA aims to be ready for any situation. Several tests performed with a mockup of the Orion crew capsule demonstrated that even if one of the airbags failed to inflate, the CMUS would still be able to perform as intended.

The system was previously tested in the Neutral Buoyancy Lab, a giant pool at NASA's Johnson Space Center in Houston, primarily used for astronaut training, as well as off the coast of Galveston, Texas. Engineers also wanted to test the uprighting system in more challenging waves, similar to those where Orion is expected to land, and partnered with the Coast Guard to test the CMUS in the Atlantic Ocean.

Engineers experimented with four different CMUS configurations over several days of testing. These tests verified the system's ability to perform in varying wave conditions, and demonstrated how the CMUS would protect the crew in a wide range of landing scenarios.

"Performing full-scale integrated testing like this at-sea is very complex. The recent CMUS accomplishments were the result of years of work and planning on this critical system needed to enable safe crew recovery of future Orion missions," said Tara Radke, Orion Integrated Landing and Recovery System manager.

"I'm grateful to our dedicated team for their support that made these tests all a huge success."

With the success of both tests, the Orion team is well on its way to verify Orion is ready for missions to the Moon and beyond.

Tuesday, March 26, 2019

Vector's GalacticSky GSky-1 satellite ready for launch later this year

Vector, the space access company, has announced its GalacticSky division, which has been in stealth mode since 2016. Led by veterans from VMWare and Citrix, as well as satellite innovators, GalacticSky has achieved a major milestone on its path to launch its first GalacticSky software-defined satellite, GSky-1. GSky-1 successfully completed integration at the University of Southern California's Space Engineering Research Center (SERC) at the Information Sciences Institute (ISI) and will validate GalacticSky's mission to enable innovators to easily and effectively deploy space application technology in space. Developed in its Silicon Valley office, and utilizing Vector's patented software-defined satellite technology, developers will no longer be required to build and pay for their own satellites. Instead, they can create an application and host it on an existing satellite or across an ad-hoc constellation made up of satellites all within the GalacticSky ecosystem. GalacticSky will provide future digital innovators the autonomy to develop and test applications in space. "GalacticSky was created with the goal to bring the promise of space-based technologies to a much larger pool of entrepreneurs who don't need to be space experts to build and deploy their ideas," said Shaun Coleman, co-founder, chief sales and marketing officer at Vector and SVP/GM GalacticSky. "By creating a space-grade cloud computing platform in space, GalacticSky ultimately fulfils Vector's mission of extending access to space and the team at USC is a great partner to support us in our endeavor."


Led by Professor David Barnhart, former DARPA program manager, USC astronautical engineering research professor and director of SERC, the primary mission of this microsatellite is to serve as an on-orbit testbed for GalacticSky and three advanced technology payloads. Following its launch, the satellite will be controlled remotely by Vector and monitored by the SERC research team from a ground antenna at the USC campus and from SERC in Marina del Rey. The primary mission is scheduled to be completed within 90 days once launched, but the satellite will continue to operate and provide system performance data for several years.

"Joining forces with Vector on the GalacticSky satellite mission was an overall great experience for the USC Space Engineering Research Center team," said USC Research Professor David Barnhart, Director of the Space Engineering Research Center (SERC) at USC's Information Sciences Institute (ISI). "Working with industry experts in this environment allows direct transition from theory to practice, within budget and schedule constraints not typically included in normal schedules."

GSky-1 hosts the following advanced technology payloads for NASA and the Air Force Research Laboratory (AFRL) that will provide independent data to characterize the harsh environment and operational performance of GalacticSky:

CrossTrac Precision Timing Board (PTB) - Combines the short-term precision of an atomic clock with the long-term stability of a GPS receiver to provide users with a programmable precision time reference. The test data from PTB ground and flight demonstrations have been purchased by NASA.

Cateni Processor/Sensor Flight Board (PSFB) - Integrates advanced command and data processing components with ethernet interfaces for IP based communications between the vehicle and payloads, two Teledyne radiation dosimeters (one shielded by VSRS and the other exposed to space), and integrated GPS with the groundbreaking MEMs integrated 6-axis MotionTracking device that combines a 3-axis gyroscope, 3-axis accelerometer, and a Digital Motion Processor.

TUI Versatile Structural Radiation Shielding (VSRS) - VSRS is a novel, 3D-printed radiation shielding technology developed by Tethers Unlimited under Air Force Small Business Innovation Research (SBIR) funding to provide a lightweight, customizable, and cost-effective solution to enable commercial off the shelf (COTS) electronics to operate reliably in the space radiation environment.

"There is no substitute for operating in space and to that end our challenge was to get GalacticSky on orbit as soon as possible. Working with USC's SERC team at ISI was a natural fit since they had a mission proven satellite in need of a payload, and GalacticSky needed a satellite to integrate with," said Dr. Darren Garber, president of Vector Government Systems. "The integrated Vector and SERC team successfully delivered GSky-1 on time and on budget within six months. Now GalacticSky is ready to meet our users' needs, and with SERC, we're able to move as fast as our customers."

Through GalacticSky, Vector is adding a smart cloud-based layer to microsatellites, creating a truly software-defined-satellite, allowing satellites to dynamically change their missions on orbit as well as provide innovators a cost-effective way to deploy technology in space without the need to build a satellite.

GalacticSky utilizes modern datacenter computing in space and a virtualization hypervisor powered by Citrix to maximize memory, on-board processing, and network bandwidth. With these features, data can now undergo significant processing and analysis in space thus providing key information to users, saving time, bandwidth, and money. To learn more about Vector's GalacticSky platform

Monday, March 25, 2019

Ultra-sharp images make old stars look absolutely marvelous

Just as high-definition imaging is transforming home entertainment, it is also advancing how astronomers study the universe. "Ultra-sharp adaptive optics images from the Gemini Observatory allowed us to determine the ages of some of the oldest stars in our galaxy," said Leandro Kerber of the Universidade de Sao Paulo and Universidade Estadual de Santa Cruz, Brazil. Kerber led a large international research team that published their results in the April 2019 issue of the Monthly Notices of the Royal Astronomical Society. Using advanced adaptive optics technology at the Gemini South telescope in Chile, the researchers zoomed in on a cluster of stars known as HP 1. "Removing our atmosphere's distortions to starlight with adaptive optics reveals tremendous details in the objects we study," added Kerber. "Because we captured these stars in such great detail, we were able to determine their advanced age and piece together a very compelling story." That story begins just as the universe was reaching its one-billionth birthday. "This star cluster is like an ancient fossil buried deep in our galaxy's bulge, and now we've been able to date it to a far-off time when the universe was very young," said Stefano Souza, a PhD student at the Universidade de Sao Paulo, Brazil, who worked with Kerber as part of the research team. The team's results date the cluster at about 12.8 billion years, making these stars among the oldest ever found in our galaxy. "These are also some of the oldest stars we've seen anywhere," added Souza. "HP 1 is one of the surviving members of the fundamental building blocks that assembled our galaxy's inner bulge," said Kerber.


Until a few years ago, astronomers believed that the oldest globular star clusters - spherical swarms of up to a million stars - were only located in the outer parts of the Milky Way, while the younger ones resided in the innermost galactic regions.

However, Kerber's study, as well as other recent work based on data from the Gemini Observatory and the Hubble Space Telescope (HST), have revealed that ancient star clusters are also found within the galactic bulge and relatively close to the galactic center.

Globular clusters tell us much about the formation and evolution of the Milky Way. Most of these ancient and massive stellar systems are thought to have coalesced out of the primordial gas cloud that later collapsed to form the spiral disk of our galaxy, while others appear to be the remnant cores of dwarf galaxies shredded by the gravity of our Milky Way.

Of the roughly 160 globular clusters known in our galaxy, about a quarter are located within the greatly obscured and tightly packed central bulge region of the Milky Way. This spherical mass of stars some 10,000 light-years across forms the central hub of the Milky Way (the yolk if you will) which is made primarily of old stars, gas, and dust.

Among the clusters within the bulge, those that are the most metal-poor (lacking in heavier elements) - which includes HP 1 - have long been suspected of being the oldest. HP 1 then is pivotal, as it serves as an excellent tracer of our galaxy's early chemical evolution.

"HP 1 is playing a critical role in our understanding of how the Milky Way formed," Kerber said. "It is helping us to bridge the gap in our understanding between our galaxy's past and its present."

Kerber and his international team used the exquisitely deep high-resolution adaptive optics images from Gemini Observatory as well as archival optical images from the HST to identify faint cluster members, which are essential for age determination. With this rich data set they confirmed that HP 1 is a fossil relic born less than a billion years after the Big Bang, when the universe was in its infancy.

"These results crown an effort of more than two decades with some of the world's premier telescopes aimed at determining accurate chemical abundances with high-resolution spectroscopy," said Beatriz Barbuy of the Universidade de Sao Paulo, coauthor of this paper and a world-renowned expert in this field.

"These Gemini images are the best ground-based photometric data we have. They are at the same level of HST data, allowing us to recover a missing piece in our puzzle: the age of HP 1. From the existence of such old objects, we can attest to the short star formation timescale in the galactic bulge, as well as its fast chemical enrichment."

To determine the cluster's distance, the team used archival ground-based data to identify 11 RR Lyrae variable stars (a type of "standard candle" used to measure cosmic distances) within HP 1.

The observed brightness of these RR Lyrae stars indicate that HP 1 is at a distance of about 21,500 light-years, placing it approximately 6,000 light-years from the galactic center, well within the galaxy's central bulge region.

Kerber and his team also used the Gemini data, as well HST, Very Large Telescope, and Gaia mission data, to refine the orbit of HP 1 within our galaxy. This analysis shows that during HP 1's history, the cluster came as close as about 400 light-years from the galactic center - less than one-tenth of its current distance.

"The combination of high angular resolution and near-infrared sensitivity makes GeMS/GSAOI an extremely powerful tool for studying these compact, highly dust-enshrouded stellar clusters," added Mattia Libralato of the Space Telescope Science Institute, a coauthor on the study.

"Careful characterization of these ancient systems, as we've done here, is paramount to refine our knowledge of our galaxy's formation."

Chris Davis, program officer at the National Science Foundation (NSF) for Gemini, commented, "These fabulous results demonstrate why the development of wide-field, high-resolution imaging at Gemini is key to the observatory's future. The recent NSF award to support the development of a similar system at Gemini North will make routine super-sharp imaging from both hemispheres a reality. These are certainly exciting times for the observatory."

The Gemini observations resolve stars to about 0.1 arcsecond which is one 36 thousandth of a degree. This is comparable to separating two automobile headlamps from approximately 1,500 miles, or 2,500 kilometers, away (the distance from Manaus to Sao Paulo in Brazil, or from San Francisco to Dallas in the USA).

This resolution was obtained using the Gemini South Adaptive Optics Imager (GSAOI) - a near-infrared adaptive optics camera used with the Gemini Multi-conjugate adaptive optics System (GeMS). GeMS is an advanced adaptive optics system utilizing three deformable mirrors to correct for distortions imparted on starlight by turbulence in layers of our atmosphere.

Saturday, March 23, 2019

Testing the value of artificial gravity for astronaut health

Test subjects in Cologne, Germany will take to their beds for 60 days from 25 March as part of a groundbreaking study, funded by European Space Agency ESA and US space agency NASA, into how artificial gravity could help astronauts stay healthy in space. Carried out at the German Aerospace Center's (DLR) :envihab facility, the long-term bedrest study is the first of its kind to be conducted in partnership between the two agencies. It is also the first to employ DLR's short-arm centrifuge as a way of recreating gravity for participants. But just how easy is it to stay in bed for 60 days and what is the relevance of adding artificial gravity for space researchers? We pull back the covers on this unique investigation as preparations get underway. Bedrest has long been used to mimic some of the changes our bodies experience in the weightlessness of space. Humans are made to live on Earth and without the constant pull of gravity it is common for muscles and bones to start wasting away. Currently, astronauts on board the International Space Station exercise for up to 2.5 hours per day and maintain a balanced diet to help mitigate microgravity's effects, but scientists believe adding a dose of artificial gravity could be key during longer-term missions. Though it may sound simple for the 8 male and 4 female volunteers involved, lying in bed for a full 60 days, plus a further 29 days of acclimatisation and recovery, is not quite as restful as it seems. Throughout the course of the study, all 24 participants will need to remain at :envihab on the DLR campus. There they will be kept in beds with the head end tilted 6 below horizontal and must ensure one of their shoulders is touching the mattress at all times.


As blood flows to their heads and muscle is lost from underuse, researchers will investigate changes and test techniques from diet to physical exercise. Artificial gravity is one of the techniques under the spotlight this time around and will see some of the participants sent spinning.

Recreating gravity
Once a day, a selection of the study's participants will lie in DLR's short-arm centrifuge. There they will be spun to encourage blood to flow back towards their feet and allow researchers to understand the potential of artificial gravity in combating the effects of weightlessness.

The intensity of the centrifugal force is able to be adapted to each person according to their size. DLR can also adjust the centre of spin so that subjects are spun around their heads or their chests. Changing the position in this way could have far-reaching consequences for rehabilitation but, as this is a new domain, these consequences are currently unknown.

A number of different experiments will be carried out over the course of the study, looking at cardiovascular function, balance and muscle strength, metabolism and cognitive performance among other factors. Seven of these experiments will be conducted by European-led research groups, with a view to validating the findings on the International Space Station during future missions.

An international effort
ESA team leader for research Jennifer Ngo-Anh says the international nature of the long-term bedrest study reflects the international collaboration necessary as ESA plans future missions to the Moon and beyond.

"To make these missions possible, various risks to astronaut health must be minimised. This study allows us to address the issue of muscular atrophy caused by weightlessness, but also other stressors such as cosmic radiation, isolation and spatial restrictions."

Tuesday, March 19, 2019

Witnessing the birth of a massive binary star system

Scientists from the RIKEN Cluster for Pioneering Research in Japan, Chalmers University of Technology in Sweden and the University of Virginia in the USA and collaborators have made observations of a molecular cloud that is collapsing to form two massive protostars that will eventually become a binary star system. While it is known that most massive stars possess orbiting stellar companions it has been unclear how this comes about - for example, are the stars born together from a common spiraling gas disk at the center of a collapsing cloud, or do they pair up later by chance encounters in a crowded star cluster. Understanding the dynamics of forming binaries has been difficult because the protostars in these systems are still enveloped in a thick cloud of gas and dust that prevents most light from escaping. Fortunately, it is possible to see them using radio waves, as long as they can be imaged with sufficiently high spatial resolution. In the current research, published in Nature Astronomy, the researchers led by Yichen Zhang of the RIKEN Cluster for Pioneering Research and Jonathan C. Tan at Chalmers University and the University of Virginia, used the Atacama Large Millimeter/Submillimeter Array (ALMA) telescope array in northern Chile to observe, at high spatial resolution, a star-forming region known as IRAS07299-1651, which is located 1.68 kiloparsecs, or about 5,500 light years, away. The observations showed that already at this early stage, the cloud contains two objects, a massive "primary" central star and another "secondary" forming star, also of high mass. For the first time, the research team were able to use these observations to deduce the dynamics of the system.


The observations showed that the two forming stars are separated by a distance of about 180 astronomical units - a unit approximately the distance from the earth to the sun. Hence, they are quite far apart. They are currently orbiting each other with a period of at most 600 years, and have a total mass at least 18 times that of our sun.

According to Zhang, "This is an exciting finding because we have long been perplexed by the question of whether stars form into binaries during the initial collapse of the star-forming cloud or whether they are created during later stages. Our observations clearly show that the division into binary stars takes place early on, while they are still in their infancy."

Another finding of the study was that the binary stars are being nurtured from a common disk fed by the collapsing cloud and favoring a scenario in which the secondary star of the binary formed as a result of fragmentation of the disk originally around the primary. This allows the initially smaller secondary protostar to "steal" infalling matter from its sibling and eventually they should emerge as quite similar "twins".

Tan adds, "This is an important result for understanding the birth of massive stars. Such stars are important throughout the universe, not least for producing, at the ends of their lives, the heavy elements that make up our Earth and are in our bodies."

Zhang concludes, "What is important now is to look at other examples to see whether this is a unique situation or something that is common for the birth of all massive stars."

Sunday, March 17, 2019

Lockheed Martin develops world-first LTE-Over-Satellite System

Lockheed Martin has developed a new LTE-over-Satellite system designed to provide connectivity to remote regions, including areas without cellphone coverage, boats off-shore, or during natural disasters like hurricanes, wildfires, earthquakes, catastrophic floods or volcanoes. New hotspots connect existing phones to satellites for reliable 4G connections. "When disaster strikes, cell phone networks often go down - whether because of the event or because of the sheer volume of traffic," said Maria Demaree, vice president and general manager of Mission Solutions at Lockheed Martin Space. "So, it's important to have new ways to connect families and first responders with people who would be otherwise cut off from contact." Typically, during an emergency that knocks out cellular networks, specialized satellite phones are the only option for mobile connectivity. While satellite phones will still play a key role in disaster recovery, Lockheed Martin's LTE-over-Satellite solution lets people complement satellite phones with their existing commercial phones to connect to a pop-up cellular network that is connected directly to a satellite. The system takes advantage of the fact that 4G devices are now widespread across the world. According to a 2018 Global mobile Suppliers Association (GSA) report, LTE now accounts for more than a third of all mobile subscriptions globally (35.7%). LTE offers broadband data rates in addition to voice and SMS, so important photos, files and commerce can still take place even if traditional communications infrastructure is disrupted.


The new mobility system isn't limited to use during natural disaster or terrorist attacks, it can be potentially used by offshore fisherman located far from cell towers, remote mineral production outposts, scientific and research stations, and in agriculture operations.

Hotspots can be mounted to vehicles, trucks, or ships to provide additional connectivity. For example, with a vehicular-mounted device, LTE-over-satellite connectivity follows a first responder straight to the scene without a separate device. It can be used on cargo trucks to transmit locational data, shipment information and allow vital voice communication to connect with a central dispatcher.

Wednesday, March 13, 2019

Opportunity's parting shot was a beautiful panorama

Over 29 days last spring, NASA's Mars Exploration Rover Opportunity documented this 360-degree panorama from multiple images taken at what would become its final resting spot in Perseverance Valley. Located on the inner slope of the western rim of Endurance Crater, Perseverance Valley is a system of shallow troughs descending eastward about the length of two football fields from the crest of Endeavor's rim to its floor. "This final panorama embodies what made our Opportunity rover such a remarkable mission of exploration and discovery," said Opportunity project manager John Callas of NASA's Jet Propulsion Laboratory in Pasadena, California. "To the right of center you can see the rim of Endeavor Crater rising in the distance. Just to the left of that, rover tracks begin their descent from over the horizon and weave their way down to geologic features that our scientists wanted to examine up close. And to the far right and left are the bottom of Perseverance Valley and the floor of Endeavour crater, pristine and unexplored, waiting for visits from future explorers." The trailblazing mission ended after nearly 15 years of exploring the surface of Mars, but its legacy will live on. Opportunity's scientific discoveries contributed to our unprecedented understanding of the planet's geology and environment, laying the groundwork for future robotic and human missions to the Red Planet. The panorama is composed of 354 individual images provided by the rover's Panoramic Camera (Pancam) from May 13 through June 10, or sols (Martian days) 5,084 through 5,111. This view combines images taken through three different Pancam filters. The filters admit light centered on wavelengths of 753 nanometers (near-infrared), 535 nanometers (green) and 432 nanometers (violet). A few frames (bottom left) remain black and white, as the solar-powered rover did not have the time to record those locations using the green and violet filters before a severe Mars-wide dust storm swept in on June 2018.


The gallery includes the last images Opportunity obtained during its mission (black-and-white thumbnail images from the Pancam that were used to determine how opaque the sky was on its last day) and also the last piece of data the rover transmitted (a "noisy," incomplete full-frame image of a darkened sky).


After eight months of effort and sending more than a thousand commands in an attempt to restore contact with the rover, NASA declared Opportunity's mission complete on Feb. 13, 2019.

Tuesday, March 12, 2019

Gateway to the Moon

The International Space Station partners have endorsed plans to continue the development of the Gateway, an outpost around the Moon that will act as a base to support both robots and astronauts exploring the lunar surface. The Multilateral Coordination Board, which oversees the management of the Space Station, stressed its common hope for the Gateway to open up a cost-effective and sustainable path to the Moon and beyond. The announcement comes after several years of extensive study among space agencies who have developed a technically achievable design. The partnership includes European countries (represented by ESA), the United States (NASA), Russia (Roscosmos), Canada (CSA) and Japan (JAXA). "We are getting ready, together, to send humans farther into the Solar System than ever before. The lunar Gateway is the next big step in human exploration and we are working to make Europe a part of it," says David Parker, ESA's human and robotic exploration director. NASA's Orion spacecraft will transport astronauts to the Gateway. Orion is powered by the European Service Module, which will give the crewed vehicle a final push to inject it into translunar orbit. Almost 50 years after the first human landing on the Moon, the Gateway will support human and robotic access to the lunar surface. "We will extend the presence of humans one thousand times farther into space compared to today's International Space Station," adds David Parker. The Gateway will offer a platform for scientific discovery in deep space and build invaluable experience for the challenges of future human missions to Mars.


Nearly 400 000 km away from Earth, its orbit will provide excellent visibility of both the Earth and the Moon's surface allowing it to relay communications.

According to the board, the Gateway "will stimulate the development of advanced technologies, expand the emerging space economy, and continue to leverage the societal benefits of space exploration for citizens on Earth."

Canada has already confirmed its commitment to join NASA in the Gateway and contribute advanced robotics to the project, making the Canadian Space Agency the first partner agency.

ESA's potential involvement includes the ESPRIT module to provide communications and refueling of the Gateway and a science airlock for deploying science payloads and cubesats.

ESA is also studying its involvement in the international habitation module working with the international partners.

A possible commitment towards building Europe's contributions to the Gateway will be one of the key decisions to be made by Ministers at the Space19+ Conference in November 2019.

A springboard to the future

The Gateway would not be possible without the International Space Station. After two decades of successful operations in orbit and a solid partnership on Earth, the Space Station is the worlds largest cooperative programme in science and technology.

With more than 100 countries having used it for research and education activities, the partners remark that the Space Station is also nurturing a growing economy of business and services in Earth's orbit.

"This international team has not only built the Space Station and risen to the challenges of its day-to-day dynamic operation, but - most importantly - delivered tangible benefits to humanity," says the statement.

Sunday, March 10, 2019

China's Largest Solid-Fuel Rocket Scheduled for First Launch in 2019

Chinese legislators have urged the country to formulate its own space law to boost the development of commercial space and pay more attention to the outflow of talent. China's private space sector will embrace more opportunities in 2019. The country should complete its laws and regulations on the private space sector to support its commercial development, Hu Shengyun, a senior rocket engineer at China Aerospace Science and Industry Corporation and deputy to the 13th National People's Congress (NPC) from Wuhan, Central China's Hubei Province, told the Global Times. The value of commercial space travel in China is projected to reach 30 billion yuan ($4.6 billion) annually by 2020, Hu said. Xiaomi founder and CEO Lei Jun, who is also an NPC deputy, told media that China is the only space power without its own space law, suggesting that promoting legislation on space will guarantee the rights of private companies on utilizing space resources. Lei also suggested the government relax its market access to private companies and promote the sharing of space infrastructure. Around 29 countries have space laws or regulations. Space agencies used to be sponsored by governments. Commercial upstarts have joined the competition since the beginning of the century. In 2017, among the 443 satellites launched globally, 267 were commercial satellites, and 26 out of the 91 rockets used to launch these satellites were from private companies, Bingdian Weekly reported in September 2018. Hu also said the Kuaizhou-11, China's largest solid-fuel carrier rocket is scheduled to make its maiden launch this year.


The new type solid-fuel carrier rocket series Kuaizhou is the country's first carrier rocket for commercial purposes, and the Kuaizhou-11 is much larger than the Kuaizhou-1.

Kuaizhou is a low-cost solid-fuel carrier rocket with high reliability and a short preparation period. With a lift-off mass of 78 tons, the rocket was designed to launch low-Earth and Sun-synchronous orbit satellites.

Hu also suggested the country pay more attention to the exodus of space talent. State-owned space enterprises are losing a large number of scientific and technological talent, which should be given more attention, Hu said.

The China Association for Science and Technology recently released a report on people working in the science and technology fields in China. The report found that the average annual salary was 91,000 yuan in 2016. Some 33.5 percent of them are living paycheck-to-paycheck.

Although their average salary has increased by 22.7 percent compared with 2012, their satisfaction with their salary has dropped. That's because their salary has not kept pace with those in other fields, the report said.

Saturday, March 9, 2019

SpaceX Dragon capsule splashes down in Atlantic Ocean: NASA

The SpaceX Dragon capsule successfully splashed down in the Atlantic Ocean on Friday after more than six days in space, completing its demonstration mission for US space agency NASA. "Good splashdown of Dragon confirmed!" the SpaceX account tweeted along with an image of the capsule showing its four main white and orange parachutes deployed as two boats sped toward it. Live footage from NASA showed the capsule's main parachutes opened without a hitch, and it splashed down at 8:45 am (1345 GMT), completing a mission to demonstrate that it could reliably and safely carry astronauts to the International Space Station (ISS). Launched on Saturday from the Kennedy Space Center in Florida, Dragon docked at ISS the following day before detaching early Friday for its return to Earth. It represents the first private space mission to the ISS, as well as the first time a space vessel capable of carrying people was launched by the US in eight years. SpaceX, founded by Elon Musk in 2002, was selected along with the Boeing group by NASA in 2014 to develop the next generation of space vehicles for US astronauts, after the end of the 1981-2011 space shuttle program. Only a test dummy was aboard for the test, but the first manned flight aboard Dragon is scheduled for July with two astronauts -- a date that could be postponed until later this year.


pre splashdown report

Crew Dragon, the new space capsule built by SpaceX for NASA, began its return to Earth Friday -- the trickiest part of a mission to prove it can take US astronauts to the International Space Station and bring them back safely.

Dragon gently and successfully undocked from the ISS Friday at 0732 GMT as they flew 250 miles over Sudan.

After umbilical wires and hooks latching it to the ISS were released, the unmanned white module's thrusters fired several times, easing it away from the space station.

On NASA TV, it looked like a slow-motion ballet whereas the two craft were actually orbiting Earth at 17,500 miles per hour (27,000 kph).

Five hours later, the capsule will leave Earth's orbit and re-enter the atmosphere, testing its heat shield. Splashdown off the coast of Florida is expected at 8:45am Eastern Time (1345 GMT).

"I'd say hypersonic re-entry is probably my biggest concern," Elon Musk, the founder and head of SpaceX, said last Saturday following the capsule's launch from the Kennedy Space Center.

"Will the parachutes deploy correctly? And will the system guide Dragon 2 to the right location and splashdown safely?" he asked.

The mission has been hitch-free thus far. Dragon docked with the ISS Sunday without incident, and the space station's three current crew members were able to open the hatch and enter the capsule. They closed the hatch Thursday.

This time around, Dragon's own crew member is a dummy, named Ripley. But if all goes well, the next flight will see two US astronauts book a return trip to the ISS, sometime before the end of the year, according to NASA. Boeing is also in on the project to resume manned space flight from US soil after an eight year hiatus.

"It won't be long before our astronaut colleagues are aboard Crew Dragon and Boeing Starliner vehicles, and we can't wait," US astronaut Anne McClain said on behalf of the ISS crew after the capsule left the ISS.

"Let us continue to be united by our insatiable curiosity to go beyond what is known, to do what has never been done. We humans are at our best when we are part of something bigger than ourselves."

The capsule's descent will be broadcast in its entirety by NASA and SpaceX, thanks in large part to a camera embedded in Dragon.

A NASA spokeswoman told AFP a drone would be on hand over the Atlantic to try to film the capsule, which will be slowed by four parachutes as it falls.

Long-range cameras have also been loaded onto the recovery ship. SpaceX did not broadcast live footage of Dragon's interior during the flight up to the ISS.

- Like Apollo -

NASA and the administration of President Donald Trump have spent all week extolling the historic nature of the mission.

It represents the first private space mission to the ISS, as well as the first time a space vessel capable of carrying people was launched by the US in eight years.

Dragon also marks a return to a "vintage" format: it is the first US capsule since the pioneering Apollo program of the 1960s and 70s.

Capsules have no wings and fall to the earth, their descent slowed only by parachutes -- much like the Russian Soyuz craft, which land in the steppes of Kazakhstan.

The last generation of US spacecraft, the Space shuttles, landed like airplanes. Shuttles took American astronauts to space from 1981 to 2011, but their cost proved prohibitive, while two of the original four craft had catastrophic accidents, killing 14 crew members.

After the program was retired, the US government, under then president Barack Obama, turned toward SpaceX and Boeing to develop a new way to ferry its crews, paying the firms for their transport services.

Due to about three years of development delays, the switch has come to fruition under Trump.

For now, Russia will continue to be the only country taking humans to the ISS. NASA buys seats for its astronauts, who train with their cosmonaut counterparts.

Russia, for its part, has not seemed particularly enthused with the success of the Dragon flight.

While the space world was busy congratulating SpaceX and NASA last Saturday, Russian space agency Roskomos tweeted only the following day, praising the US space agency (not SpaceX) but insisting the "safety of flights should be irreproachable," a likely reference to technical objections Russia had raised on Dragon's approach procedure towards the ISS.

But the space agencies themselves insist that cooperation remains excellent.

In the long run, said NASA's Johnson Space Center director Mark Geyer, US astronauts will continue to learn Russian, and vice versa.

"There'll be a Russian on our flights, and we'll still have an American on a Soyuz flight. That's mainly because we always want, in case there are issues with either system, that we have an integrated crew."

Tuesday, March 5, 2019

2Operate and GomSpace to boost constellation management with AI

As the space economy is switching from single satellite infrastructures to constellations of affordable small satellites, network elements inevitably increase in complexity. 2Operate and GomSpace, together with Aarhus University, are working together within the MegaMan project, funded by Innovation Fund Denmark, to evaluate how existing telecom standards and existing artificial intelligence (AI) solutions developed for the terrestrial telecom sector can be leveraged to manage future satellite constellations robustly and efficiently. As part of the collaboration, the partners have successfully evaluated 2Operate's existing AI-based 2Solve product using the GOMX-4 satellite mission by GomSpace and the Delfini-1 mission by Aarhus University. The use of 2Solve and AI for satellite constellation management help reduce the amount of operator hours required to manage satellite constellations by reducing work-load for network monitoring and for root-cause-analysis tasks, as the AI is trained using expert knowledge to automate these tasks. Further, the automation of these functions means that network incidents can be resolved much faster leading to higher availability of the satellite services. Based on the successful trials, 2Operate and GomSpace have signed an MoU to strengthen the companies' collaboration and to prepare introduction of the 2Solve AI-capabilities through GomSpace's Mega-Constellations Operations Platform (MCOP) being introduced by GomSpace's subsidiary in Luxembourg.


"It is very exciting for us to see how the lessons learned from the terrestrial telecom sector can boost the uptake of advance network management solutions for space - and how well our product adapts to the new requirements", says Christian Ingerslev Sorensen, CEO of 2Operate.

"Being able to operate satellite constellations 24/7 with the highest availability is a key capability for GomSpace, and being able to integrate proven solutions reduces both risk and required investments", says Niels Buus, CEO of GomSpace.

2Operate and GomSpace last week jointly exhibited at the World Mobile Congress in Barcelona, showcasing how the application of the 2Solve product applied to satellite mission management.

Monday, March 4, 2019

Exiled planet linked to stellar flyby 3 million years ago

Some of the peculiar aspects of our solar system - an enveloping cloud of comets, dwarf planets in weird orbits and, if it truly exists, a possible Planet Nine far from the sun - have been linked to the close approach of another star in our system's infancy flung things helter-skelter. But are stellar flybys really capable of knocking planets, comets and asteroids askew, reshaping entire planetary systems? UC Berkeley and Stanford University astronomers think they have now found a smoking gun. A planet orbiting a young binary star may have been perturbed by another pair of stars that skated too close to the system between 2 and 3 million years ago, soon after the planet formed from a swirling disk of dust and gas. If confirmed, this bolsters arguments that close stellar misses help sculpt planetary systems and may determine whether or not they harbor planets with stable orbits. "One of the mysteries arising from the study of exoplanets is that we see systems where the planets are misaligned, even though they are born in a flat, circular disk," said Paul Kalas, a UC Berkeley adjunct professor of astronomy. "Maybe a cosmic tsunami hit these systems and rearranged everything about them, but we haven't had proof. Our paper gives rare observational evidence for one of these flybys gently influencing one of the planetary systems in the galaxy." Astronomers are already searching for a stellar flyby in our solar system's past, but since that likely happened 4.6 billion years ago, most of the evidence has gone cold. The star system that the astronomers studied, identified only by the number HD 106906 and located about 300 light years from Earth in the direction of the constellation Crux, is very young, only about 15 million years old.


Kalas and Robert De Rosa, a former UC Berkeley postdoc who is now a research scientist at Stanford's Kavli Institute for Particle Astrophysics and Cosmology, describe their findings in a paper accepted for publication in the Astronomical Journal and now available online.

Rogue stars

Kalas, who studies young, newly formed planetary systems to try to understand what happened in the early years of our own solar system, first focused on HD 106906 in 2015 after it was found to have a massive planet in a highly unusual orbit. The planet, dubbed HD 106906 b, has a mass of about 11 Jupiters, and it orbits HD 106906 - recently revealed to be a binary star - in an orbit tipped about 21 degrees from the plane of the disk that contains all the other material around the star. Its current location is at least 738 times farther from its star than Earth is from the sun, or about 18 times farther from its star than Pluto is from the sun.

Kalas used both the Gemini Planet Imager on the Gemini Telescope in the Chilean Andes and the Hubble Space Telescope to look more closely at HD 106906 and discovered that the star has a lopsided comet belt, as well. The planet's strange orbit and the fact that the dust disk itself is asymmetrical indicated that something had disrupted the young system.

Kalas and his colleagues, including De Rosa, proposed that the planet had been kicked out of its solar system by interactions with another as-yet-unseen planet in the system or by a passing star. Kalas and De Rosa now believe that both happened: The planet was kicked into an eccentric orbit when it came dangerously close to the central binary star, a scenario proposed in 2017 by theorist Laetitia Rodet and her collaborators from the Grenoble Observatory in France. Repeated gravitational kicks from the binary would have quickly ejected the planet into interstellar space, but the passing stars rescued the planet by nudging its orbit to a safer distance from the binary.

The Gaia space observatory gave them the data they needed to test their hypothesis. Gaia, launched in 2012 by the European Space Agency, collects precise measurements of distance, position and motion for 1.3 billion stars in the Milky Way Galaxy, a catalog 10,000 times larger than Gaia's predecessor, Hipparcos.

Kalas and De Rosa gathered Gaia information on 461 stars in the same cluster as HD 106906 and calculated their positions backward in time - reversed the cosmic clock, so to speak - and discovered that another binary star system may have approached close enough 3 million years ago to alter the planetary system.

"What we have done here is actually find the stars that could have given HD 106906 b the extra gravitational kick, a second kick so that it became long-lived, just like a hypothetical Planet Nine would be in our solar system," Kalas said.

They also found also that the binary star came in on a trajectory that was within about 5 degrees of the system's disk, making it even more likely that the encounter had a strong and lasting impact on HD 106906.

Such double kicks may be important to stabilizing planets, asteroids and comets around stars, Kalas said.

"Studying the HD 106906 planetary system is like going back in time to watch the Oort cloud of comets forming around our young sun," he said. "Our own giant planets gravitationally kicked countless comets outward to large distances. Many were ejected completely, becoming interstellar objects like ?Oumuamua, but others were influenced by passing stars. That second kick by a stellar flyby can detach a comet's orbit from any further encounters with the planets, saving it from the prospect of ejection. This chain of events preserved the most primitive solar system material in a deep freeze far from the sun for billions of years."

Kalas hopes that future observations, such as an updated catalog of Gaia measurements, will clarify the significance of the flyby on HD 106906.

"We started with 461 suspects and discovered two that were at the scene of the crime," he said. "Their exact role will be revealed as we gather more evidence."

SwRI-led New Horizons research indicates small Kuiper Belt objects are surprisingly rare

Using New Horizons data from the Pluto-Charon flyby in 2015, a Southwest Research Institute-led team of scientists have indirectly discovered a distinct and surprising lack of very small objects in the Kuiper Belt. The evidence for the paucity of small Kuiper Belt objects (KBOs) comes from New Horizons imaging that revealed a dearth of small craters on Pluto's largest satellite, Charon, indicating that impactors from 300 feet to 1 mile (91 meters to 1.6 km) in diameter must also be rare. The Kuiper Belt is a donut-shaped region of icy bodies beyond the orbit of Neptune. Because small Kuiper Belt objects were some of the "feedstock" from which planets formed, this research provides new insights into how the solar system originated. This research was published in the March 1 issue of the prestigious journal Science. "These smaller Kuiper Belt objects are much too small to really see with any telescopes at such a great distance," said SwRI's Dr. Kelsi Singer, the paper's lead author and a co-investigator of NASA's New Horizons mission. "New Horizons flying directly through the Kuiper Belt and collecting data there was key to learning about both large and small bodies of the Belt." "This breakthrough discovery by New Horizons has deep implications," added the mission's principal investigator, Dr. Alan Stern, also of SwRI. "Just as New Horizons revealed Pluto, its moons, and more recently, the KBO nicknamed Ultima Thule in exquisite detail, Dr. Singer's team revealed key details about the population of KBOs at scales we cannot come close to directly seeing from Earth."


Craters on solar system objects record the impacts of smaller bodies, providing hints about the history of the object and its place in the solar system. Because Pluto is so far from Earth, little was known about the dwarf planet's surface until the epic 2015 flyby.

Observations of the surfaces of Pluto and Charon revealed a variety of features, including mountains that reach as high as 13,000 feet (4 km) and vast glaciers of nitrogen ice. Geologic processes on Pluto have erased or altered some of the evidence of its impact history, but Charon's relative geologic stasis has provided a more stable record of impacts.

"A major part of the mission of New Horizons is to better understand the Kuiper Belt," said Singer, whose research background studying the geology of the icy moons of Saturn and Jupiter positions her to understand the surface processes seen on KBOs.

"With the successful flyby of Ultima Thule early this year, we now have three distinct planetary surfaces to study. This paper uses the data from the Pluto-Charon flyby, which indicate fewer small impact craters than expected. And preliminary results from Ultima Thule support this finding."

Typical planetary models show that 4.6 billion years ago, the solar system formed from the gravitational collapse of a giant molecular cloud. The Sun, the planets and other objects formed as materials within the collapsing cloud clumped together in a process known as accretion. Different models result in different populations and locations of objects in the solar system.

"This surprising lack of small KBOs changes our view of the Kuiper Belt and shows that either its formation or evolution, or both, were somewhat different than those of the asteroid belt between Mars and Jupiter," said Singer.

"Perhaps the asteroid belt has more small bodies than the Kuiper Belt because its population experiences more collisions that break up larger objects into smaller ones."

Friday, March 1, 2019

Dark matter may be hitting the right note in small galaxies

Dark matter may scatter against each other only when they hit the right energy, say researchers in Japan, Germany, and Austria in a new study. Their idea helps explain why galaxies from the smallest to the biggest have the shapes they do. Dark matter is a mysterious and unknown form of matter that comprises more than 80 per cent of matter in the Universe today. Its nature is unknown, but it is believed to be responsible for forming stars and galaxies by its gravitational pull, which led to our existence. "Dark matter is actually our mom who gave birth to all of us. But we haven't met her; somehow, we got separated at birth. Who is she? That is the question we want to know," says paper author Hitoshi Murayama, a University of California Berkeley Professor and Kavli Institute for the Physics and Mathematics of the Universe Principal Investigator. Astronomers have already found dark matter does not seem to clump together as much as computer simulations suggest. If gravity is the only force that drives dark matter, only pulling and never pushing, then dark matter should become very dense towards the center of galaxies. However, especially in small faint galaxies called dwarf spheroidals, dark matter does not seem to become as dense as expected toward their centers. This puzzle could be solved if dark matter scatters with each other like billiard balls, allowing them to spread out more evenly after a collision. But one problem with this idea is that dark matter does seem to clump in bigger systems such as clusters of galaxies. What makes dark matter behave differently between dwarf spheroidals and clusters of galaxies? An international team of researchers has developed an explanation that could solve this riddle, and reveal what dark matter is.


"If dark matter scatters with each other only at a low but very special speed, it can happen often in dwarf spheroidals where it is moving slowly, but it is rare in clusters of galaxies where it is moving fast. It needs to hit a resonance" says Chinese physicist Xiaoyong Chu, a postdoctoral researcher at the Austrian Academy of Sciences.

Resonance is a phenomenon that appears every day. To swirl wine in a glass to get it more oxygen so that it lets out more aroma and softens its taste, you need to find the right speed to circle the wine glass. Or you dial old analog radios to the right frequency to tune into your favorite station. These are all examples of resonance, says Murayama. The team suspects this is precisely what dark matter is doing.

"As far as we know, this is the simplest explanation to the puzzle. We are excited because we may know what dark matter is sometime soon," says Murayama.

However, the team was not convinced that such a simple idea would explain the data correctly.

"First, we were a bit skeptical that this idea will explain the observational data; but once we tried it, it worked like a charm!" says Colombian researcher Camilo Garcia Cely, a postdoctoral researcher at the Deutsches Elektronen-Synchrotron (DESY) in Germany.

The team believes it is no accident that dark matter can hit the exact right note.

"There are many other systems in nature that show similar accidents: in stars alpha particles hit a resonance of beryllium, which in turn hits a resonance of carbon, producing the building blocks that gave rise to life on Earth. A similar process happens for a subatomic particle called phi," says Garcia Cely.

"It may also be a sign that our world has more dimensions than we see. If a particle moves in extra dimensions, it has energy. For us who don't see the extra dimension, we think the energy is actually a mass, thanks to Einstein's E=mc2. Perhaps some particle moves twice as fast in extra dimension, making its mass precisely twice as much as the mass of dark matter," says Chu.

The team's next step will be to find observational data that backs their theory.

"If this is true, future and more detailed observation of different galaxies will reveal that scattering of dark matter indeed depends on its speed," says Murayama, who is also leading a separate international group that intends to do precisely this using the under construction Prime Focus Spectrograph.

The US$80 million instrument will be mounted on the Subaru telescope atop Mauna Kea on Big Island, Hawaii, and will be capable of measuring the speeds of thousands of stars in dwarf spheroidals.

Astronauts Assemble Tools to Test Space Tech

Technology drives exploration for future human missions to the Moon, Mars and beyond. For spacecraft to journey farther and live longer, we'll need to store and transfer super-cold liquids used for fuel and life support systems in space. In December 2018, the Robotic Refueling Mission 3 (RRM3) launched to the International Space Station to do just that - transfer and store cryogenic fuel in space for the first time. Last week, astronauts Anne McClain of NASA and David Saint-Jacques of the Canadian Space Agency assembled the mission's custom transfer tools and prepared them for installation on RRM3. RRM3 consists of two primary parts: the main payload that houses the fluid, transfer lines and tanks and three external tools mounted on a pedestal. The three tools are the Multi-Function Tool 2, which operates smaller specialized tools to prepare for the fluid transfer, the Cryogen Servicing Tool 2, which uses a hose to connect the tank filled with liquid methane to the empty tank, and the Visual Inspection Poseable Invertebrate Robot 2, which uses a state-of-the-art robotic camera to make sure tools are properly positioned. Shortly after RRM3's arrival, the space station's robotic arm Dextre affixed the main payload to the station. Meanwhile, the pedestal and tools made their way inside for assembly. With assembly complete, Dextre will soon attach the integrated hardware to the payload.


Looking Forward

With both parts together in one piece, RRM3 will begin operations in the next few months. Dextre will use the tools to transfer the cryogenic fuel to an empty tank and monitor the process. The technology demonstration will help make future exploration missions sustainable and prove that the whole is indeed greater than the sum of its parts.

RRM3 builds on the first two phases of International Space Station technology demonstrations that tested tools, technologies and techniques to refuel and repair satellites in orbit.

It is developed and operated by the Satellite Servicing Projects Division at NASA's Goddard Space Flight Center in Greenbelt, Maryland, and managed by the Technology Demonstration Missions program office within NASA's Space Technology Mission Directorate.