Thursday, November 28, 2019

Europe faces up to new space challenges

European ministers met Wednesday in Spain aiming to defend its top space ranking against challenges from the United States and China, and increasingly from industry disruptors such as Elon Musk's Space X. Ministers of the 22 European Space Agency (ESA) member states gathered in Seville to discuss a request for 14.3 billion euros in funding, some four billion euros more than in the previous 3-year budget. The European Union has already agreed to provide 16 billion euros and now the crucial question is what to spend it on. "There is a desire to do more, to have a more ambitious scientific programme and to develop our infrastructure to match our ambitions," ESA spokesman Philippe Willekens told AFP last week. In a fast changing environment, "Europe must pay attention to remain the leader in those sectors it already is and to continue to conquer new markets," Willekens added. In recent years, Europe has established itself as a major space player, with its very heavy Ariane 6 rocket launcher the latest off the production line and the Galileo GPS system operational. But this position is now "threatened," the Institut Montaigne think-tank in Paris says, as global competition increases, led by the United States and China who have poured massive amounts of money into the industry, both civilian and military. "Europe does not have the structural advantages of the Americans and Chinese because it does not have a single, shared objective," said Isabelle Sourbes-Verger of France's National Centre for Scientific Research (CNRS).



"Europe has the same problem it has always had -- what justifies spending more on space?"

- 'New Space' challenge -

Europe must answer these questions just as new players such as Space X and a host of others, mostly American, have begun to emerge, shaking up the industry.

This "New Space" evolution has seen Musk for example develop reusable launchers for dramatically smaller yet more powerful satellites, many designed for the "connected world" of driverless cars and countless other aspects of everyday life on earth.

Some experts fear that Europe is simply not competitive enough to get into these new markets, never mind holding on to what it already has.

Ariane 6 is a particular cause for concern, with French state audit officials recently describing its economic model as "presenting some risks" given ferocious competition from Space X which in 2017 took Arianespace's global satellite launch crown.

Space X has forced down costs sharply, developing a reusable rocket which the Europeans thought initially to be impossible, the officials said.

Worse still, Europe "at this stage has only developed the building blocks which will allow, in due time, to acquire" this re-usable technology, the auditors said in a report.

Arianespace head Stephane Israel insists that Ariane 6 is "just the beginning" and the rocket programme "opens a cycle of innovations which will have to be accelerated."

At the same time, Ariane 6, whose first flight is scheduled for next year, will not be competitive in the long-run unless there is a high rate of launches, which will depend in turn on "numerous institutional orders," he said.

US government orders account for some 80 percent of Space X's scheduled work, he recalled.

Israel noted in this context recent supportive comments by French President Emmanuel Macron and German Chancellor Angela Merkel that Europe should favour European launch options.

Sourbes-Verger at CNRS cautioned that "space is not a commercial industry like any other -- making money with a launcher is ambitious."

Europe should therefore continue to focus on "original projects and on developing its strong points," such as in scientific space efforts, she added.

Monday, November 25, 2019

Boeing CST-100 Starliner takes next step for orbital flight test

The Boeing CST-100 Starliner spacecraft that will launch to the International Space Station on the company's uncrewed Orbital Flight Test for NASA's Commercial Crew Program (CCP) has taken a significant step toward launch. Starliner rolled out of Boeing's Commercial Crew and Cargo Processing Facility at NASA's Kennedy Space Center in Florida on Nov. 21, making the trek on a transport vehicle to Space Launch Complex 41 at Cape Canaveral Air Force Station. "This is critical to our future as a nation," said Kennedy's center director Bob Cabana. "We've got to get astronauts flying on U.S rockets from U.S. soil, and this is just a huge step forward." Cabana was joined by CCP and Boeing leaders in a gathering of employees and families to watch Starliner roll out of the factory. "For the team that has built the first American spacecraft designed to land on land, and to get it rolling out, is absolutely incredible," said John Mulholland, Vice President and Program Manager of Boeing Commercial Crew Programs. "Something this complex takes a huge team." "Look at that amazing sight and what your success looks like," said Kathy Lueders, NASA's Commercial Crew Program Manager. "We're not done yet. We've got to step into the mission carefully, fly this vehicle up to the space station, and bring it home safely." At the pad, Starliner was hoisted up at the Vertical Integration Facility and secured atop a United Launch Alliance Atlas V rocket for the flight test to the space station. The Atlas V rocket that will carry Starliner comprises a booster stage and dual-engine Centaur upper stage, as well as a pair of solid rocket boosters.


NASA astronauts Mike Fincke and Nicole Mann and Boeing astronaut Chris Ferguson were on hand to witness the rollout milestone ahead of the uncrewed flight test.

"This is the dawn of a new era," said Ferguson. "For all of you youngsters out there who came out here early to watch, I'm glad you were a part of this. This is really important because this is your future, too."

"We're looking forward to the day when we're launching people on a regular basis," said Fincke. "As graduates of military test pilot schools, we are really excited to see how Starliner's going to behave; we know it's going to be awesome, and we're going to get all kinds of really great test data from it."

The uncrewed flight test, targeted to launch Dec. 17, will provide valuable data on the end-to-end performance of the Atlas V rocket, Starliner spacecraft and ground systems, as well as in-orbit, docking and landing operations. The data will be used as part of NASA's process of certifying Boeing's crew transportation system for carrying astronauts to and from the space station.

"It comes down to trust," said Mann. "I'm talking about trust in the individuals-our fellow Americans-who are building this spacecraft and making this possible. You walk around the factory and there is this amazing attention to detail, and it gives you this great level of confidence," said Mann.

NASA is working in partnership with Boeing and SpaceX to launch astronauts on American rockets and spacecraft from American soil for the first time since 2011. Safe, reliable and cost-effective human transportation to and from the space station will allow for additional research time and increase the opportunity for discovery aboard humanity's testbed for exploration.

Sunday, November 24, 2019

Boeing Starliner Crew spacecraft heads to pre-launch processing

Boeing's CST-100 Starliner spacecraft is transported from NASA's Kennedy Space Center to a facility at Cape Canaveral Air Force Station on Thursday, Nov. 21, 2019. Later in the day it was placed atop a United Launch Alliance Atlas V rocket ahead of Boeing's uncrewed Orbital Flight Test to the International Space Station. Boeing's uncrewed flight test, which is targeted for Dec. 17, will provide valuable data on the end-to-end performance of the rocket, spacecraft and ground systems, as well as, in-orbit and landing operations. The data will be used toward certification of Boeing's crew transportation system for carrying astronauts to and from the space station. NASA's Commercial Crew Program is working with the American aerospace industry through public-private partnerships to launch astronauts on American rockets and spacecraft from American soil for the first time since 2011. The goal of the program is safe, reliable and cost-effective human space transportation to and from the International Space Station. This could allow for additional research time aboard the station and increase the opportunity for discovery aboard humanity's testbed for exploration, which includes sending astronauts to the Moon and Mars.


Friday, November 22, 2019

MEASAT selects Arianespace for launch of MEASAT-3d

Arianespace and MEASAT Global Berhad (MEASAT), the leading Malaysian satellite operator, has announced the signature of a launch services contract for MEASAT-3d. MEASAT-3d, a new multi-mission telecommunications satellite, will be launched into geostationary transfer orbit by an Ariane 5 heavy-lift launch vehicle from the Guiana Space Center, Europe's Spaceport in Kourou, French Guiana (South America) in 2021. MEASAT, the leading Malaysian satellite operator, operates five satellites, providing coverage over Asia, Middle East, Africa, Europe and Australia. MEASAT-3d will serve the growth requirements of 4G and 5G mobile networks in Malaysia while continuing to provide redundancy and additional distribution capacity for video in HD, 4K, and ultimately 8K in the Asia-Pacific region. The satellite will weigh approximately 5,734 kg. at launch, and offers an operational life of 19 years. When positioned at 91.5 degrees East, MEASAT-3d will be co-located with MEASAT-3a and MEASAT-3b satellites to replace and enhance capacity in Malaysia, Asia, Middle East and Africa. The new MEASAT-3d satellite will carry multiple payload types: C- and Ku-band payloads for direct-to-home television broadcasting and other telecom services, as well as a high-throughput Ka-band payload for internet connectivity. MEASAT-3d also will carry an L-band navigation payload for Korean satellite operator Kt sat as part of the Korea Augmentation Satellite System.


Airbus Defence and Space built MEASAT-3d using the Eurostar E3000 satellite platform.

Commenting on this latest contract, Arianespace Chief Executive Officer Stephane Israel said: "We are honoured that MEASAT entrusted the launch of MEASAT-3d to Arianespace, renewing a long standing partnership with this Malaysian operator that dates back to 1996.

With one new commercial success for Ariane 5, the Ariane family reasserts itself as the best-suited solution to reach the geostationary orbit, just a few weeks before the 40 years of Ariane and before the advent of Ariane 6 in 2020!"

Wednesday, November 20, 2019

Exoplanet axis study boosts hopes of complex life, just not next door

"They're out there," goes a saying about extraterrestrials. It would seem more likely to be true in light of a new study on planetary axis tilts. Astrophysicists at the Georgia Institute of Technology modeled a theoretical twin of Earth into other star systems called binary systems because they have two stars. They concluded that 87% of exo-Earths one might find in binary systems should have axis tilts similarly steady to Earth's, an important ingredient for climate stability that favors the evolution of complex life. "Multiple-star systems are common, and about 50% of stars have binary companion stars. So, this study can be applied to a large number of solar systems," said Gongjie Li, the study's co-investigator an assistant professor at Georgia Tech's School of Physics. Single-star solar systems like our own with multiple planets appear to be rarer. The researchers started out contrasting how the Earth's axis tilt, also called obliquity, varies over time with the variation of Mars' axis tilt. Whereas our planet's mild obliquity variations have been great for a livable climate and for evolution, the wild variations of Mars' axis tilt may have helped wreck its atmosphere, as explained in the section below. Then the researchers modeled Earth into habitable, or Goldilocks, zones in Alpha Centauri AB - our solar system's nearest neighbor, a binary system with one star called "A" and the other "B." After that, they expanded the model to a more universal scope.


"We simulated what it would be like around other binaries with multiple variations of the stars' masses, orbital qualities, and so on," said Billy Quarles, the study's principal investigator and a research scientist in Li's lab. "The overall message was positive but not for our nearest neighbor."

Alpha Centauri A actually didn't look bad, but the outlook for mild axis dynamics on an exo-Earth modeled around star B was wretched. This may douse some hopes because Alpha Centauri AB is four lightyears away, and a mission named Starshot with big-name backers plans to launch a space probe to look for signs of advanced life there.

The researchers are publishing their study, which was co-led by Jack Lissauer from NASA Ames Research Center, in Astrophysical Journal on November 19, 2019, under the title: "Obliquity Evolution of Circumstellar Planets in Sun-like Stellar Binaries." The research was funded by the NASA Exobiology Program.

No exoplanets have been confirmed around A or B; an exoplanet has been confirmed around the nearby red dwarf star Proxima Centauri, but it is very likely to be uninhabitable.

Earth? Just right
Even with its ice ages and hot phases, Earth's climatological framework has been calm for hundreds of millions of years - in part because of its mild orbital and axis-tilt dynamics - allowing evolution to take big strides. Wildly varying dynamics, and thus climate, like on Mars would stand to regularly kill off advanced life, stunting evolution.

Earth's orbit around the sun is on a slight incline that seesaws gently and very slowly through a slight precession, a kind of oscillation. As Earth revolves, it shifts position relative to the sun, circling it a little like a spirograph drawing. The orbit also precesses in shape between slightly more and slightly less oblong over 100,000-year periods.

Earth's axis tilt precesses between 22.1 and 24.5 degrees over the course of 41,000 years. Our large moon stabilizes our tilt through its gravitational relationship with Earth, otherwise, bouncy gravitational interconnections with Mercury, Venus, Mars, and Jupiter would jolt our tilt with resonances.

"If we didn't have the moon, Earth's tilt could vary by about 60 degrees," Quarles said. "We'd look maybe like Mars, and the precession of its axis appears to have helped deplete its atmosphere."

Mars' axis precesses between 10 degrees and 60 degrees every 2 million years. At the 10-degree tilt, the atmosphere condenses at the poles, creating caps that lock up a lot of the atmosphere in ice. At 60 degrees, Mars could grow an ice belt around its equator.

Universe? Hopeful
In Alpha Centauri AB, star B, about the size of our sun, and the larger star, A, orbit one another at about the distance between Uranus and our sun, which is a very close for two stars in a binary system. The study modeled variations of an exo-Earth orbiting either star but concentrated on a modeled Earth orbit in the habitable zone centered around B, with A being the orbiting star.

A's orbit is very elliptical, passing close by and then moving very far away from B and slinging powerful gravity, which, in the model, overpowered exo-Earth's own dynamics. Its tilt and orbit varied widely; adding our moon to the model didn't help.

"Around Alpha Centauri B, if you don't have a moon, you have a more stable axis than if you do have a moon. If you have a moon, it's pretty much bad news," Quarles said.

Even without a moon and with mild axis variability, complex, Earthlike evolution would seem to have a hard time on the modeled exo-Earth around B.

"The biggest effect you would see is differences in the climate cycles related to how elongated the orbit is. Instead of having ice ages every 100,000 years like on Earth, they may come every 1 million years, be worse, and last much longer," Quarles said.

But a sliver of hope for Earthlike conditions turned up in the model: "Planetary orbit and spin need to precess just right relative to the binary orbit. There is this tiny sweet spot," Quarles said.

When the researchers expanded the model to binary systems in the universe, the probability of gentle obliquity variations ballooned.

"In general, the separation between the stars is larger in binary systems, and then the second star has less of an effect on the model of Earth. The planet's own motion dynamics dominate other influences, and obliquity usually has a smaller variation," Li said. "So, this is quite optimistic."

Sunday, November 17, 2019

Arianespace will orbit TIBA-1 and Inmarsat GX5 with Ariane 5

On its fourth flight with Ariane 5 in 2019, Arianespace will orbit two telecommunications satellites at the service of long-term customers: TIBA-1 for Thales Alenia Space and Airbus Defence and Space, on behalf of the Government of Egypt; and the GX5 satellite for the operator Inmarsat. Through this mission, Arianespace highlights its ability to be at the service of innovative satellite solutions for commercial and institutional needs. VA250 will be the 250th launch of an Ariane rocket, which lifted off for the first time on December 24, 1979. Flight VA250 will be performed from Ariane Launch Complex No. 3 (ELA 3) in Kourou, French Guiana. The Launch Readiness Review (LRR) will take place on Wednesday, November 20, 2019 in Kourou to authorize the start of operations for the final countdown. TIBA-1 is a civil and government telecommunication satellite for Egypt. It was developed by Thales Alenia Space and Airbus Defence and Space as co-prime contractors, with Thales Alenia Space acting as the consortium's lead partner. TIBA-1 will be owned and operated by the government of Egypt. TIBA-1 will be the fourth satellite launched by Arianespace for Egypt. It will be deployed by Arianespace into geostationary transfer orbit (GTO), subsequently transitioning to its operational orbital slot position at 35.5 East. Airbus Defence and Space is Arianespace's direct customer for this mission, continuing a fruitful cooperation between the two companies that extends back to Arianespace's creation in 1980.


GX5 is a mobile communications satellite built by Thales Alenia Space for Inmarsat. Inmarsat's fifth Ka-band Global Xpress (GX) satellite, GX5 will be the most advanced in the GX fleet, which in less than four years has become the gold standard for seamless, globally available, mobile broadband services.

Located in a geostationary orbit at 11 East, GX5 will deliver greater capacity than the entire existing GX fleet (GX1-GX4) combined and will support the rapid growth in customer demand for GX services in Europe and the Middle East, particularly for aviation passenger Wi-Fi and commercial maritime services.

This is the 10th time that Inmarsat has chosen Arianespace's launch services, demonstrating a well-established trust - with the two companies' relationship dating back to 1981.

Saturday, November 16, 2019

NASA sending solar power generator developed at Ben-Gurion to ISS

A new solar power generator prototype developed by Ben-Gurion University of the Negev (BGU) and research teams in the United States, will be deployed on the first 2020 NASA flight launch to the International Space Station. According to research published in Optics Express, the compact, microconcentrator photovoltaic system could provide unprecedented watt per kilogram of power critical to lowering costs for private space flight. As the total costs of a launch are decreasing, solar power systems now represent a larger fraction than ever of total system cost. Optical concentration can improve the efficiency and reduce photovoltaic power costs, but has traditionally been too bulky, massive and unreliable for space use. Together with U.S. colleagues, Prof. (Emer.) Jeffrey Gordon of the BGU Alexandre Yersin Department of Solar Energy and Environmental Physics, Jacob Blaustein Institutes for Desert Research, developed this first-generation prototype (1.7 mm wide) that is slightly thicker than a sheet of paper (.10 mm) and slightly larger than a U.S. quarter. "These results lay the groundwork for future space microconcentrator photovoltaic systems and establish a realistic path to exceed 350 w/kg specific power at more than 33% power conversion efficiency by scaling down to even smaller microcells," the researchers say. "These could serve as a drop-in replacement for existing space solar cells at a substantially lower cost."


A second generation of more efficient solar cells now being fabricated at the U.S. Naval Research Labs is only 0.17 mm per side, 1.0 mm thick and will increase specific power even further. If successful, future arrays will be planned for private space initiatives, as well as space agencies pursuing new missions that require high power for electric propulsion and deep space missions, including to Jupiter and Saturn.

Thursday, November 14, 2019

With Mars methane mystery unsolved, Curiosity serves scientists a new one: oxygen

For the first time in the history of space exploration, scientists have measured the seasonal changes in the gases that fill the air directly above the surface of Gale Crater on Mars. As a result, they noticed something baffling: oxygen, the gas many Earth creatures use to breathe, behaves in a way that so far scientists cannot explain through any known chemical processes. Over the course of three Mars years (or nearly six Earth years) an instrument in the Sample Analysis at Mars (SAM) portable chemistry lab inside the belly of NASA's Curiosity rover inhaled the air of Gale Crater and analyzed its composition. The results SAM spit out confirmed the makeup of the Martian atmosphere at the surface: 95% by volume of carbon dioxide (CO2), 2.6% molecular nitrogen (N2), 1.9% argon (Ar), 0.16% molecular oxygen (O2), and 0.06% carbon monoxide (CO). They also revealed how the molecules in the Martian air mix and circulate with the changes in air pressure throughout the year. These changes are caused when CO2 gas freezes over the poles in the winter, thereby lowering the air pressure across the planet following redistribution of air to maintain pressure equilibrium. When CO2 evaporates in the spring and summer and mixes across Mars, it raises the air pressure. Within this environment, scientists found that nitrogen and argon follow a predictable seasonal pattern, waxing and waning in concentration in Gale Crater throughout the year relative to how much CO2 is in the air. They expected oxygen to do the same. But it didn't. Instead, the amount of the gas in the air rose throughout spring and summer by as much as 30%, and then dropped back to levels predicted by known chemistry in fall. This pattern repeated each spring, though the amount of oxygen added to the atmosphere varied, implying that something was producing it and then taking it away.


"The first time we saw that, it was just mind boggling," said Sushil Atreya, professor of climate and space sciences at the University of Michigan in Ann Arbor. Atreya is a co-author of a paper on this topic published on November 12 in the Journal of Geophysical Research: Planets.

As soon as scientists discovered the oxygen enigma, Mars experts set to work trying to explain it. They first double- and triple-checked the accuracy of the SAM instrument they used to measure the gases: the Quadrupole Mass Spectrometer. The instrument was fine. They considered the possibility that CO2 or water (H2O) molecules could have released oxygen when they broke apart in the atmosphere, leading to the short-lived rise.

But it would take five times more water above Mars to produce the extra oxygen, and CO2 breaks up too slowly to generate it over such a short time. What about the oxygen decrease? Could solar radiation have broken up oxygen molecules into two atoms that blew away into space? No, scientists concluded, since it would take at least 10 years for the oxygen to disappear through this process.

"We're struggling to explain this," said Melissa Trainer, a planetary scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland who led this research. "The fact that the oxygen behavior isn't perfectly repeatable every season makes us think that it's not an issue that has to do with atmospheric dynamics. It has to be some chemical source and sink that we can't yet account for."

To scientists who study Mars, the oxygen story is curiously similar to that of methane. Methane is constantly in the air inside Gale Crater in such small quantities (0.00000004% on average) that it's barely discernable even by the most sensitive instruments on Mars. Still, it's been measured by SAM's Tunable Laser Spectrometer. The instrument revealed that while methane rises and falls seasonally, it increases in abundance by about 60% in summer months for inexplicable reasons. (In fact, methane also spikes randomly and dramatically. Scientists are trying to figure out why.)

With the new oxygen findings in hand, Trainer's team is wondering if chemistry similar to what's driving methane's natural seasonal variations may also drive oxygen's. At least occasionally, the two gases appear to fluctuate in tandem.

"We're beginning to see this tantalizing correlation between methane and oxygen for a good part of the Mars year," Atreya said. "I think there's something to it. I just don't have the answers yet. Nobody does."

Oxygen and methane can be produced both biologically (from microbes, for instance) and abiotically (from chemistry related to water and rocks). Scientists are considering all options, although they don't have any convincing evidence of biological activity on Mars.

Curiosity doesn't have instruments that can definitively say whether the source of the methane or oxygen on Mars is biological or geological. Scientists expect that non-biological explanations are more likely and are working diligently to fully understand them.

Trainer's team considered Martian soil as a source of the extra springtime oxygen. After all, it's known to be rich in the element, in the form of compounds such as hydrogen peroxide and perchlorates. One experiment on the Viking landers showed decades ago that heat and humidity could release oxygen from Martian soil.

But that experiment took place in conditions quite different from the Martian spring environment, and it doesn't explain the oxygen drop, among other problems.

Other possible explanations also don't quite add up for now. For example, high-energy radiation of the soil could produce extra O2 in the air, but it would take a million years to accumulate enough oxygen in the soil to account for the boost measured in only one spring, the researchers report in their paper.

"We have not been able to come up with one process yet that produces the amount of oxygen we need, but we think it has to be something in the surface soil that changes seasonally because there aren't enough available oxygen atoms in the atmosphere to create the behavior we see," said Timothy McConnochie, assistant research scientist at the University of Maryland in College Park and another co-author of the paper.

The only previous spacecraft with instruments capable of measuring the composition of the Martian air near the ground were NASA's twin Viking landers, which arrived on the planet in 1976. The Viking experiments covered only a few Martian days, though, so they couldn't reveal seasonal patterns of the different gases.

The new SAM measurements are the first to do so. The SAM team will continue to measure atmospheric gases so scientists can gather more detailed data throughout each season. In the meantime, Trainer and her team hope that other Mars experts will work to solve the oxygen mystery.

"This is the first time where we're seeing this interesting behavior over multiple years. We don't totally understand it," Trainer said. "For me, this is an open call to all the smart people out there who are interested in this: See what you can come up with."

Tuesday, November 12, 2019

AFRL tests in-house, rapidly developed small engine

The Air Force Research Laboratory demonstrated a new and ultra-responsive approach to turbine engine development with the initial testing of the Responsive Open Source Engine (ROSE) on Nov. 6, 2019, at Wright-Patterson Air Force Base. The Aerospace Systems Directorate's ROSE is the first turbine engine designed, assembled, and tested exclusively in-house. The entire effort, from concept initiation to testing, was executed within 13 months. This program responds to Air Force's desire for rapid demonstration of new technologies and faster, less expensive prototypes. "We decided the best way to make a low-cost, expendable engine was to separate the development costs from procurement costs," said Frank Lieghley, Aerospace Systems Directorate Turbine Engine Division senior aerospace engineer and project manager. He explained that because the design and development were conducted in-house, the Air Force owns the intellectual property behind it. Therefore, once the engine is tested and qualified, the Air Force can forego the typical and often slow development process, instead opening the production opportunity to lower-cost manufacturers better able to economically produce the smaller production runs needed for new Air Force platforms.The applications for this class of engine are many and varied, but the development and advancement of platforms that could make use of it has typically been stymied because the engines have been too expensive. Through this effort, AFRL hopes to lower the engine cost to roughly one fourth of the cheapest current alternative, an almost unheard-of price for such technology, thus enabling a new class of air vehicles that can capitalize on the less expensive engine.


"There's no end to what might be done, but it's all enabled by inexpensive production," said Dr. Greg Bloch, Aerospace Systems Directorate Turbine Engine Division chief engineer. "It's the ability to turn the economics of warfare around."

Bloch added that the design and development of this engine was a unique learning opportunity for younger engineers within the directorate. By participating in the entire process, from cradle to grave, junior workforce engineers gained first-hand experience with every aspect of engine development.

"We have a lengthy history of providing technical oversight at a high level to various engine companies as they develop these engines for the U.S. Air Force," said Bloch. "By teaching our people to do this themselves, we're instilling in them a level of gravitas that will serve the Air Force well when we then apply that oversight to the traditional engine manufacturers."

The team says ROSE is more than just a first-of-its-kind engine development project. It represents a shift in thinking about how to do business.

"We're not trying to compete with our commercial partners, we are leveraging an underutilized sector to meet Air Force needs," said Lt. Col. Ionio Andrus, Aerospace Systems Directorate Turbine Engine Division deputy division chief.

Andrus added that by working closely with other AFRL organizations, including the Materials and Manufacturing Directorate and the Air Force Institute of Technology, the team leveraged internal expertise that helped advance the project. Additionally, by starting from scratch and performing all the work themselves, the AFRL team developed new tools and models that will be available for use in future iterations and new engine design projects.

"This is the right project for the issues that AFRL, the Turbine Engine Division, and the Air Force are facing," said Andrus. "There's a lot of goodness here."

Following this test event, the team will use the measured data to validate their newly-developed design tools and will work toward developing a second iteration of the engine that will be smaller and lighter. With the tools and know-how already in place, Lieghley expects the second design to be completed even more quickly than the first.

Bloch calls ROSE another milestone in the Turbine Engine Division's rich legacy in equipping Air Force platforms. However, this one holds a special place in the hearts and minds of the engineers behind it.

"There's not an Air Force engine fielded today whose technology can't be traced back to Turbine Engine Division in-house work," he said. "We'll eventually hand this off to a manufacturer, but this one is all AFRL on the inside."

Saturday, November 9, 2019

First launch of UK OneWeb communications satellites from Baikonur postponed

The first launch of UK communications satellites OneWeb from Russia's Baikonur Cosmodrome was initially supposed to take place on 19 December. The launch of UK OneWeb space internet system satellites from the Baikonur space centre was postponed from December this year to January 2020, three sources in Russia's rocket and space industry revealed. "The launch is being postponed due to the fact that the spacecraft are not ready. Their delivery to Baikonur is delayed from November to December 2019. The planned launch is postponed from 19 December to 23 January," one of the sources said, with two other sources confirming this information. OneWeb plans to create a constellation of satellites that will provide broadband Internet access to users around the world fully covering the Earth's surface. In cooperation with Roscosmos, the UK communications company sent up its first satellites in February and has planned its next two launches for the end of this year and the first half of 2020.




Thursday, November 7, 2019

New payload fairing from RUAG Space enables quieter journey to space

RUAG Space, a leading supplier to the space industry, has successfully developed and tested a new low shock jettison system for payload fairings. This enables a quieter and smoother journey to space for satellites or other payload. The required payload fairings for the European launchers Ariane and VEGA have been produced by RUAG Space in Emmen, Switzerland, since the 1970s. As part of the Future Launchers Preparatory Programme (FLPP) of the European Space Agency (ESA), RUAG Space has developed this new separation and jettison system for payload fairings. "This new solution enables a quieter journey to space", says Peter Guggenbach, CEO RUAG Space. The payload fairing protects the satellite from aerodynamic and thermal loads during flight. After passing through dense atmospheric layers and as soon as the satellite is no longer at risk, the payload fairing is separated from the launch vehicle. As a rule, two pyrotechnic mechanisms are fired to open hinges, allowing the half-shells to separate safely from the payload. "Pyrotechnics is a proven technology, which may generate significant shock during activation and may result in excitation that needs to be considered in the design of the launcher and payload hardware", says Alberto Sanchez Cebrian, Project Manager at RUAG.



Lower development costs and simpler test conditions
The separation and jettison system has a modular design and reduces development costs, as parts can be improved or replaced without affecting the entire system. Testing is easier and the mechanism does not require synchronization.

The tests were carried out at the RUAG Spaces site in Emmen on a 2.6 m long Vega payload fairing. The new system is scalable and could also be used for, for instance, in the European launch vehicle Ariane.

In addition to the successful separation test, a significant noise reduction was achieved. An integrated sound-reducing perforated insulation layer within the sandwich panels of the payload fairing enables noise reduction without increasing mass and volume.

In certain frequency bands this system could replace acoustic absorber mats currently used in payload fairings. Testing and evaluation of this new system will continue in the next phase of the project.

Wednesday, November 6, 2019

Numerous polar storms on Saturn analyzed by the UPV/EHU's Planetary Sciences Group

Sanchez-Lavega's work appears under the title 'A complex storm system in Saturn's north polar atmosphere in 2018', and was produced in collaboration with Teresa del Rio-Gaztelurrutia, Jon Legarreta and Ricardo Hueso, lecturers at the Faculty of Engineering in Bilbao, and a large group of scientists of other nationalities. It was an amateur Brazilian astronomer who on 29 March, 2018, captured on telescope a brilliant white spot on the disc of the planet Saturn close to its north pole. A few days later the spot increased in size reaching a length of approximately 4,000 km and became the most noteworthy detail on the disc of the ringed planet. A second spot appeared further north on the planet a few months later, and sequentially over subsequent months, a third and fourth spot; the latter spots were much closer to the polar region on the edge of the famous Saturn hexagon that had never been previously observed. The spots drifted throughout all these months at varying speeds dragged along by the atmospheric winds that blow on Saturn like jet streams Eastwards and Westwards and whose intensity depends on the latitude. While the first spot, located further south at a speed of about 220 km/hour drifted Eastwards, the one located further north drifted at about 20 km/hour Westwards. This led to encounters between them; some passed close to others and in the course of their mutual interaction they generated atmospheric disturbances that spread throughout Saturn's polar region.



The features of the spots suggest that they are storms that burst as a result of convection in the deep water clouds about 200 km below the visible clouds. The hot, humid gas rises forcefully in Saturn's thin, hydrogen atmosphere and forms thick clouds of ammonia, which are the ones seen through the telescope.

"It is the first time that we have seen such a phenomenon of numerous storms at different latitudes. To date, we had seen small isolated storms or else the gigantic, rare ones known as the Great White Spots," said Agustin Sanchez-Lavega, who is leading this study. Strangely enough, the first storm arose inside a cyclonic vortex, according to images prior to the discovery and obtained months before the Cassini spacecraft was disposed of.

Long-lived, high intensity storms
According to the models developed to simulate these storms, their energy is midway between small and gigantic ones, but the mechanism causing them to gradually emerge at different altitudes on the planet is not known, and, more crucially, neither is it known how they manage to keep going for so long.

"On the Earth, storms of this type last a few days at the most, but on Saturn, the first of all the spots remained active for more than seven months," said Sanchez-Lavega. What is more, like the Great White Spots, the fresh storms have only been observed in the northern hemisphere (they've never been spotted in the south) and appear to have been in line with their formation rate of one every 30 to 60 years.

Like other planets with an atmosphere, Saturn is a natural laboratory where it is possible to study the meteorological phenomena taking place on our planet and to test out, under extreme conditions, the models used to explain and predict them.

The study was carried out in wide-ranging international collaboration that has involved the Cassini space mission, which was orbiting the planet until September 2017, the Hubble Space Telescope, the UPV/EHU's PlanetCam camera installed at the Calar Alto Observatory, and a whole network of amateur observers who provided the images allowing the evolution of the phenomenon to be monitored on a day-to-day basis.

Saturday, November 2, 2019

Astronomers catch wind rushing out of galaxy

Exploring the influence of galactic winds from a distant galaxy called Makani, UC San Diego's Alison Coil, Rhodes College's David Rupke and a group of collaborators from around the world made a novel discovery. Published in Nature, their study's findings provide direct evidence for the first time of the role of galactic winds - ejections of gas from galaxies - in creating the circumgalactic medium (CGM). It exists in the regions around galaxies, and it plays an active role in their cosmic evolution. The unique composition of Makani - meaning wind in Hawaiian - uniquely lent itself to the breakthrough findings. "Makani is not a typical galaxy," noted Coil, a physics professor at UC San Diego. "It's what's known as a late-stage major merger - two recently combined similarly massive galaxies, which came together because of the gravitational pull each felt from the other as they drew nearer. Galaxy mergers often lead to starburst events, when a substantial amount of gas present in the merging galaxies is compressed, resulting in a burst of new star births. Those new stars, in the case of Makani, likely caused the huge outflows - either in stellar winds or at the end of their lives when they exploded as supernovae." Coil explained that most of the gas in the universe inexplicably appears in the regions surrounding galaxies - not in the galaxies. Typically, when astronomers observe a galaxy, they are not witnessing it undergoing dramatic events - big mergers, the rearrangement of stars, the creation of multiple stars or driving huge, fast winds.


"While these events may occur at some point in a galaxy's life, they'd be relatively brief," noted Coil. "Here, we're actually catching it all right as it's happening through these huge outflows of gas and dust."

Coil and Rupke, the paper's first author, used data collected from the W. M. Keck Observatory's new Keck Cosmic Web Imager (KCWI) instrument, combined with images from the Hubble Space Telescope and the Atacama Large Millimeter Array (ALMA), to draw their conclusions.

The KCWI data provided what the researchers call the "stunning detection" of the ionized oxygen gas to extremely large scales, well beyond the stars in the galaxy. It allowed them to distinguish a fast gaseous outflow launched from the galaxy a few million year ago, from a gas outflow launched hundreds of millions of years earlier that has since slowed significantly.

"The earlier outflow has flowed to large distances from the galaxy, while the fast, recent outflow has not had time to do so," summarized Rupke, associate professor of physics at Rhodes College.

From the Hubble, the researchers procured images of Makani's stars, showing it to be a massive, compact galaxy that resulted from a merger of two once separate galaxies. From ALMA, they could see that the outflow contains molecules as well as atoms.

The data sets indicated that with a mixed population of old, middle-age and young stars, the galaxy might also contain a dust-obscured accreting supermassive black hole. This suggests to the scientists that Makani's properties and timescales are consistent with theoretical models of galactic winds.

"In terms of both their size and speed of travel, the two outflows are consistent with their creation by these past starburst events; they're also consistent with theoretical models of how large and fast winds should be if created by starbursts. So observations and theory are agreeing well here," noted Coil.

Rupke noticed that the hourglass shape of Makani's nebula is strongly reminiscent of similar galactic winds in other galaxies, but that Makani's wind is much larger than in other observed galaxies.

"This means that we can confirm it's actually moving gas from the galaxy into the circumgalactic regions around it, as well as sweeping up more gas from its surroundings as it moves out," Rupke explained. "And it's moving a lot of it - at least one to 10 percent of the visible mass of the entire galaxy - at very high speeds, thousands of kilometers per second."

Rupke also noted that while astronomers are converging on the idea that galactic winds are important for feeding the CGM, most of the evidence has come from theoretical models or observations that don't encompass the entire galaxy.

"Here we have the whole spatial picture for one galaxy, which is a remarkable illustration of what people expected," he said. "Makani's existence provides one of the first direct windows into how a galaxy contributes to the ongoing formation and chemical enrichment of its CGM."