Tuesday, February 27, 2018

Mars Odyssey Observes Martian Moons

Phobos and Deimos, the moons of Mars, are seen in this movie put together from 19 images taken by the Mars Odyssey orbiter's Thermal Emission Imaging System, or THEMIS, camera.The images were taken in visible-wavelength light. THEMIS also recorded thermal-infrared imagery in the same scan.The apparent motion is due to progression of the camera's pointing during the 17-second span of the February 15, 2018, observation, not from motion of the two moons.This was the second observation of Phobos by Mars Odyssey; the first was on September 29, 2017. Researchers have been using THEMIS to examine Mars since early 2002, but the maneuver turning the orbiter around to point the camera at Phobos was developed only recently. The distance to Phobos from Odyssey during the observation was about 3,489 miles (5,615 kilometers). The distance to Deimos from Odyssey during the observation was about 12,222 miles (19,670 kilometers).


THEMIS was developed by and is operated by a team based at Arizona State University, Tempe. NASA's Jet Propulsion Laboratory, Pasadena, California, manages the Mars Odyssey mission for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter and partners in its operation. JPL is a division of Caltech in Pasadena.

Monday, February 26, 2018

SwRI scientist helps characterize water on lunar surface

A Southwest Research Institute scientist with expertise in how water reacts with lunar soil contributed to a new study that indicates water and/or hydroxyl may be more prevalent on the Moon's surface than previously thought."Water on the Moon is of intense interest for many reasons," said SwRI's Dr. Michael Poston, a coauthor of the paper, "Widespread Distribution of OH/ H2O on the Lunar Surface Inferred from Spectral Data," published in Nature Geoscience online. Water has been the focus of many lunar missions, largely because it is a critical resource for a Moon habitat. "When you split water molecules, you end up with oxygen and hydrogen, critical components for breathable air and rocket fuel. Hydroxyl (OH) is a more reactive relative to water and not as attractive as water in terms of supporting a lunar station." Up until the last decade or so, scientists thought negligible amounts of water were present on the Moon, perhaps existing mainly as ice in the permanently shaded craters near the poles. However, in 2009, NASA's Moon Minerology Mapper spectrometer onboard India's Chandrayaan-1 spacecraft and two other NASA flight spectrometers detected signatures interpreted as water in sunlight reflected from the Moon's surface.



These data, along with measurements from NASA's Lunar Reconnaissance Orbiter (LRO), also indicated the amount of water on the surface could vary diurnally ? a cycle based on the time of day ? and be more common at higher latitudes. One of these measurements came from the Lyman Alpha Mapping Project (LAMP), built and managed by SwRI.

"This research is a great example of how multiple instruments and investigations allow you to do more than what you could do with one instrument alone," added the paper's lead author Dr. Josh Bandfield, of the Space Science Institute in Boulder, Colorado. "As new data about the temperature environment on the Moon emerged, it became apparent that we needed to recalibrate our spectral datasets."

The Moon produces a mixture of reflected and emitted light. It glows in the infrared when heated by the Sun, and its surface reflects infrared light from the Sun. Using detailed surface temperature maps from the Diviner Lunar Radiometer Experiment on LRO and thermophysics modeling, Bandfield could subtract the right amount of Moon glow from the reflected sunlight to better characterize the inferred measurements of water.


Poston has conducted extensive experiments with water and lunar samples collected by the Apollo missions that revealed the amount of energy needed to remove water molecules from lunar rock. This helps scientists understand how tightly water is bound to surface materials.

Based on the team's results, it appears that OH/H2O is present on lunar surfaces under much more wide-ranging conditions than previously understood. The OH/H2O, either in a steady state or actually static, does not appear to be daily migrating about the lunar surface in significant quantities. This limits the amount of OH/H2O that would land in dark polar craters and be trapped there for millennia.

"The next step is to determine whether it's water, hydroxyl, or a mixture of the two - and where it came from," Poston said. "Is it from external sources, delivered by comet or asteroid impacts? Is it from internal processes on the Moon itself, such as ancient volcanism? Or could it be an ongoing process of the solar wind reacting with lunar materials to create OH or HH2O?"

"Some of these scientific problems are very, very difficult, and it's only by drawing on multiple resources from different missions that we are able to hone in on an answer," said LRO project scientist John Keller of NASA's Goddard Space Flight Center in Greenbelt, Maryland.

Sunday, February 25, 2018

Millenium tapped for certification of Vulcan space launch systems

Millennium Engineering and Integration was awarded a contract for heavy payload launch vehicles and rockets. The deal, announced Thursday by the Department of Defense, is valued at more than $9.9 million under the terms of a cost-plus-fixed-fee task order contract. The agreement taps Millennium Engineering and Integration of Arlington, Va., to provide certification support for the Vulcan launch systems and Next Generation Launcher launch systems.The Vulcan launch system and Next Generation Launcher launch systems are used to deploy carrier rockets into outer space with the goal of transporting security, science and commercial payloads. The Pentagon says the contract will provide systems engineering and integration services for the U.S. government in support of the Vulcan launch systems and Next Generation Launcher launch systems.


Work on the contract will occur in multiple locations across the United States. The contract is expected to be complete in February 2019.

The total amount of the contract will be obligated to Millennium Engineering and Integration at the time of award from fiscal 2018 procurement funds, the Department of Defense said.

Wednesday, February 21, 2018

Laser-ranged satellite measurement now accurately reflects Earth's tidal perturbations

Tides on Earth have a far-reaching influence, including disturbing satellites' measurements by affecting their motion. This disturbance can be studied using a model for the gravitational potential of the Earth, taking into account the fact that Earth's shape is not spherical.The LAser RElativity Satellite (LARES), is the best ever relevant test particle to move in the Earth's gravitational field. In a new study published in EPJ Plus, LARES proves its efficiency for high-precision probing of General Relativity and fundamental physics. By studying the Earth's tidal perturbations acting on the LARES, Vahe Gurzadyan from the Center for Cosmology and Astrophysics at Yerevan State University, Armenia, and colleagues demonstrate the value of laser-range satellites for high-precision measurements. Specifically, laser-ranged satellites bring increased accuracy in the study and testing of what is referred to in physics as frame dragging. In this study, the authors collect the observations of Earth's tidal perturbations acting on LARES and compare them with two similar laser-ranged satellites: LAGEOS and LAGEOS 2. The team analysed 3.5 years of LARES laser-ranging data, together with that of the two LAGEOS satellites.



To extract frame-dragging from the laser-ranging data for high accuracy, the authors model the main gravitational and non-gravitational orbital perturbations. To do so, the team documented 110 significant Earth tide modes for the LARES satellite using the perturbative methods of celestial mechanics and recent data on the satellite's orbit.

Frame-dragging is one of the intriguing phenomena of Einstein's theory of General Relativity. It is an effect on space, and is elastic--in other words, it will revert back to its original shape and energy state after force is exerted on it-whereby particles exchange energy with it. This has implications for astrophysics.

Tuesday, February 20, 2018

CALIFA renews the classification of galaxies

The objects within galaxies have two basic types of motions: orbiting around the galaxy centre in a regular organized disc, or in orbits oriented at random without a clear direction of rotaiton. If we imagined that galaxies behave in the same way as the Solar System we could think that as the objects move further away from the centre their orbital velocities decrease. However this is not necessarily the case for galaxies, as there are several factors which affect the rotational velocity of these objects, such as the dimensions of the galaxy, the gravitational pull of other galaxies, and the quantity of dark matter in a given galaxy. An international team of astrophysicists,among them IAC and Universidad de La Laguna researcher Jesus Falcon Barroso, coordinator of the CALIFa (Calar Alto Legacy Integral Field Area survey) at the IAC who is one of the authors of the article published in Nature Astronomy, has collected tat from 600 galaxies in the neighbourbhood of the Milky Way with the Potsday Multiple Aperture Spectrophotometer (PMAS) on the 3.6m telescope at the Calar Alto Observatory (Almeria, Spain). As part of this catalogue the scientists have made velocity maps of 300 galaxies showing the movements of their stars.


In this way they have defined three different groups among the sets of stellar orbits, which they have called "cold orfbits" "warm orbits" and "hot orbits", the latter typical of stars with random motions. When they analyzed tghe data they showed that circular orbits are frequent in lower mass galaxies, while the "hot orbits" are more often found in galaxies with higher mass. In addition tghey have found quite a number of "warm orbits", greater than that previously expected for this type of galaxies.

Using these maps of stellar motions one can obtain a lot of informatioin about the history of formation of these galaxies. They evolve and grow over thousands of millions of years, merging with other galaxies. Those which have absorbed other smaller galaxies generally have thin rotating discs, while when two galaxies with similar masses merge an elliptical galaxy is formed, in which the orbits are arranged in random directions.

Measuring the orbits in the galaxies analyzed allows us to distinguish between disc galaxies (with colder orbits) and elliptical galaxies (with hotter orbits) even when this difference cannot be detected when using images alone. This implies that by measuring the stellar orbits the researchers will be able to determine if the galaxy we observe is the result of internal evolution of an isolated object, a relatively calm series of mergers with smaller objects, or the product of a violent merger.

CALIFA, which with its 300 galaxy simple has become one of the biggest archives of data on galaxy dynamics up to now is the "first study to propose a scheme of galaxy classification base don the orbital distribution of their stars, which is different from the classical Hubble diagram , based on morphological classification" explains Falcon Barroso. This researcher also acknowledges that the results of this study " present some problems for current theories of formation and evolution of galaxies"

This new classification has been carefully prepared to produce a representative simple which will help astronomers to make models of the evolution of galaxies, and show whether their simulations produce valid predictions.

Sunday, February 18, 2018

Launch Reservation with Open Cosmos

Vector, a nanosatellite launch company comprised of new-space and enterprise software industry veterans from SpaceX, Virgin Galactic, McDonnell Douglas, Boeing, Sea Launch and VMware and Open Cosmos, a space mission provider, has announced an agreement to reserve five orbital launches between 2019 and 2023 on the Vector-R launch vehicle. The announcement comes in advance of Vector's first orbital launch in July. "This agreement with Open Cosmos continues our ongoing efforts to partner with a broad network of customers, and signals the start of a new frontier for Vector as we prepare for our first orbital mission this summer," said Jim Cantrell, CEO and co-founder of Vector. "Open Cosmos' mission to provide simple and affordable access to space is one that very closely aligns with Vector's, and we look forward to having them along our journey as we continue breaking down the barriers to access space faced by many."


Based in the United Kingdom, Open Cosmos provides end-to-end mission services enabling its clients to focus on in-orbit data. This one-stop-shop to orbit allows companies to have dedicated nanosatellite missions for remote sensing payloads, IoT/telecommunication services, scientific research, or space technology in-orbit demonstrations.

Open Cosmos manufactures its satellites in-house, procures launch services from partners like Vector, and operates qbee fleets using its own satellite operations system while leveraging existing ground segment infrastructure.

"This agreement secures our ability to provide dedicated, affordable launch options to our customers," said Rafel Jorda-Siquier, CEO and founder of Open Cosmos.

"Following the qbee nanosatellite deployment in LEO early April 2017, we've been building a strong commercial pipeline of customers looking to get their payload to orbit and start generating revenues fast and under budget. Vector's launch cadence and aggressive prices allows us to provide increased affordable schedule certainty to our time-to-market sensitive customers."

Vector will begin construction on its state-of-the-art rocket factory in Pima County, Ariz. later this year, designed to produce up to 100 launch vehicles per year to start. Throughout 2018, Vector will be testing major elements of its Vector-R launch vehicle leading up to the July orbital launch.

Oppy Takes A Selfie To Mark Sol 5000

The Sun will rise on NASA's solar-powered Mars rover Opportunity for the 5,000th time on Saturday, sending rays of energy to a golf-cart-size robotic field geologist that continues to provide revelations about the Red Planet. "Five thousand sols after the start of our 90-sol mission, this amazing rover is still showing us surprises on Mars," said Opportunity Project Manager John Callas, of NASA's Jet Propulsion Laboratory, Pasadena, California. A Martian "sol" lasts about 40 minutes longer than an Earth day, and a Martian year lasts nearly two Earth years. Opportunity's Sol 1 was landing day, Jan. 25, 2004 (that's in Universal Time; it was Jan. 24 in California). The prime mission was planned to last 90 sols. NASA did not expect the rover to survive through a Martian winter. Sol 5,000 will begin early Friday, Universal Time, with the 4,999th dawn a few hours later. Opportunity has worked actively right through the lowest-energy months of its eighth Martian winter. From the rover's perspective on the inside slope of the western rim of Endeavour Crater, the milestone sunrise will appear over the basin's eastern rim, about 14 miles (22 kilometers) away.


Opportunity has driven over 28 miles (45 kilometers) from its landing site to its current location about one-third of the way down "Perseverance Valley," a shallow channel incised from the rim's crest of the crater's floor. The rover has returned about 225,000 images, all promptly made public online.

"We've reached lots of milestones, and this is one more," Callas said, "but more important than the numbers are the exploration and the scientific discoveries."

The mission made Oppy Takes A Selfie To Mark Sol 5000s during its first months with the evidence about groundwater and surface water environments on ancient Mars.

Opportunity trekked to increasingly larger craters to look deeper into Mars and father back into Martian history, reaching Endeavour Crater in 2011. Researchers are now using the rover to investigate the processes that shaped Perseverance Valley.

Friday, February 16, 2018

140 successful tests and several "firsts" for Vinci, the engine for Ariane 6

The re-ignitable Vinci, engine, which will power the upper stage of the Ariane 6 launcher, has now successfully completed its last two subsystems qualification campaigns (M6 and M7) with 140 engine tests conducted.The tests in campaigns M6 and M7, vital for qualification of the engine subsystems, were carried out on the PF52 bench at the ArianeGroup site in Vernon, France, and on the German Aerospace Center DLR's P4.1 bench in Lampoldshausen, Germany. A total of 25 tests (16 for M6 and 9 for M7) were carried out under nominal conditions, and include three major performance "firsts":

- a test of 1,569 seconds - an unprecedented duration,

- a series of 20 successful boosts (1 ignition followed by 19 engine re-ignitions), totaling an operating duration of 300 seconds,

- a continuous burn of 800 seconds in "high operation", i.e. at the maximum thrust for which the engine is designed.


The purpose of these tests was also to test the Vinci engine beyond its operational requirements, as it will only require ignition a maximum of 4 times during its missions, with a maximum burn time of 900 seconds in flight.

Valerie de Korver, Product Manager Vinci Propulsion System at ArianeGroup, said: "These campaigns went particularly smoothly and we demonstrated considerable margins with respect to the flight requirements, in particular thanks to a new ignition system and we successfully achieved a number of firsts, such as performing 20 boosts in a single test.

"This is a major step in demonstrating the ability of the Vinci engine to meet the versatility demands of the Ariane 6 launcher. It is also a new and major milestone for the program and for the teams, who are well aware of the challenges faced in these campaigns and who are always intensely committed to ensuring their success."

The Vinci engine was developed by ArianeGroup for Ariane 6 and provides the future European launcher with extreme versatility. Its main feature is its multiple ignition capability: Vinci will be able to re-ignite in flight as many times as necessary, in order to place several payloads in orbit at different locations, according to the specific needs of the mission.

This engine will enable Ariane 6 to carry out all types of missions, regardless of duration and target orbit, particularly the deployment of satellite constellations, for which demand will continue to grow.

Ariane 6 engine testing is continuing apace. This further success follows on from the first successful test on 13 January in Lampoldshausen, Germany, of the Vulcain 2.1 engine which will power the launcher's main stage. These tests enabled the engine to be tested throughout its flight envelope, whether in terms of thrust, mix ratio, or propellant supply conditions.

Design authority and industrial lead contractor for the development and operation of the Ariane 6 launcher on behalf of the European Space Agency (ESA), ArianeGroup coordinates an industrial network of more than 600 companies in 13 European countries, including more than 350 Small and Medium Enterprises (SMEs).

Thursday, February 15, 2018

Research will help scientists understand how stars create elements

New research involving The Australian National University (ANU) has, for the first time, demonstrated a long-theorised nuclear effect, in a feat that will help scientists understand how stars evolve and produce elements such as gold and platinum. Physicists first predicted the effect, called Nuclear Excitation by Electron Capture (NEEC), more than 40 years ago, but this research was the first positive observation and has achieved the first quantified measurement of the phenomenon. Co-researcher Dr Greg Lane said the new research would improve scientific understanding of the nuclear reactions that occur in stars. "The abundance of the different elements in a star depends primarily on the structure and behaviour of atomic nuclei," said Dr Lane from the ANU Research School of Physics and Engineering. "The NEEC phenomenon modifies the nucleus lifetime so that it survives for a shorter amount of time in a star." The NEEC effect occurs when an ionised atom captures an electron, giving the atom's nucleus enough energy to transition to a higher excited state.


ANU and other research institutions in the United States, Poland and Russia supported the project, which was led by the U.S. Army Research Laboratory.

Dr Lane said the NEEC phenomenon could also potentially be harnessed as an energy source with 100,000 times greater energy density than chemical batteries.

"Our study demonstrated a new way to release the energy stored in a long-lived nuclear state, which the U.S. Army Research Laboratory is interested to explore further," he said.

The research team observed the NEEC effect by producing an exotic isotope, molybdenum-93, in an excited state with a half-life of about seven hours.

Dr Lane said the NEEC effect accelerated the isotope's decay through an excitation pathway with a unique set of gamma rays, different from the normal pathway, which are a signature of NEEC.

The Heavy Ion Accelerator Facility at ANU was used to confirm that the NEEC signature would be unique, in readiness for the discovery experiment that used the ATLAS Accelarator at Argonne National Laboratory in the United States.

The Heavy Ion Accelerator Facility uses electricity and magnets to guide particles and speed them up to extreme energies to study the internal make-up of atomic nuclei, and how they behave when they collide.
Understanding Conditions for Star Formation

Sapporo, Japan (SPX) Feb 06 - The mechanism by which hydrogen sulphide is released as gas in interstellar molecular clouds is described by scientists in Japan and Germany, in the journal Nature Astronomy. The process, known as chemical desorption, is more efficient than previously believed, and this has implications for our understanding of star formation in molecular clouds.

Molecular clouds are rare, but are important parts of the galaxy where molecules form and evolve. In the colder, denser areas, and under the right conditions, stars are formed. Theoretically, in molecular clouds at temperatures of 10 kelvin, all molecules except hydrogen and helium should be locked into ice on the surface of dust, not freely floating around. However, observations have shown this is not the case.

Understanding how molecules are released from dust at low temperatures is crucial to explaining how chemicals evolve in such cold clouds. The dissolution of particles from ice due to ultraviolet radiation, a process called photodesorption, has been demonstrated to play a role in some parts of the massive clouds. However, this would be inefficient in the darker, denser areas where stars are formed.

Researchers have supposed chemical desorption is at work in those areas, releasing particles using excess energy from a chemical reaction. The idea was first proposed 50 years ago, but scientists had not provided proof of the process until now.

The research team led by Yasuhiro Oba and Naoki Watanabe from Hokkaido University in Japan, in collaboration with the University of Stuttgart in Germany, set up the conditions to investigate.

Using an experimental system containing amorphous solid water at 10 kelvin and hydrogen sulphide (H2S), the team exposed the H2S to hydrogen and monitored the reaction with infrared absorption spectroscopy.

The experiment demonstrated that the desorption is caused by hydrogen interacting with H2S and the reaction is therefore a chemical one. They were able to quantify desorption after the reaction, and found it was a much more efficient process than previously estimated.

This work is the first infrared in-situ measurement of chemical desorption, and gives detailed descriptions during reactions which are key to understanding interstellar sulphur chemistry.

"Interstellar chemistry is of great importance to understanding the formation of stars, as well as water, methanol and possibly to more complex molecular species," says Watanabe. A significant step forward in the fields of astronomy and chemistry, the experimental setup can now be used to examine other molecules in the future.

Astronomers Concerned with Proposed Cancellation of Space Telescope

Sharing alarm voiced by other scientists, leaders of the American Astronomical Society (AAS) are expressing grave concern over the administration's proposed cuts to NASA's astrophysics budget and the abrupt cancellation of the Wide Field Infrared Survey Telescope (WFIRST). "We cannot accept termination of WFIRST, which was the highest-priority space-astronomy mission in the most recent decadal survey," says AAS President-Elect Megan Donahue (Michigan State University). "And the proposed 10% reduction in NASA's astrophysics budget, amounting to nearly $1 billion over the next five years, will cripple US astronomy." WFIRST, the successor to the 28-year-old Hubble Space Telescope and the forthcoming James Webb Space Telescope, is the top-ranked large space-astronomy mission of New Worlds, New Horizons in Astronomy and Astrophysics, the National Academies' Astro2010 decadal survey, and is an essential component of a balanced space astrophysics portfolio. Cutting NASA's astrophysics budget and canceling WFIRST would leave our nation without a large space telescope to succeed Hubble and Webb.


Yet just last year another National Academies report, Powering Science: NASA's Large Strategic Missions, found that "large strategic missions are critical for balance and form the backbone of the disciplines" of NASA's Science Mission Directorate (SMD), which includes astrophysics. The same report further recommended that "NASA should continue to plan for large strategic missions as a primary component for all science disciplines as part of a balanced program that also includes smaller missions."

"The AAS has long supported community-based priority setting as a fundamental component in the effective funding, management, and oversight of the federal research enterprise," says AAS Executive Officer Kevin B. Marvel.

"This process has been tremendously successful and has led to US preeminence in space science through missions that are now household names, like Hubble." Marvel continues, "Not only is WFIRST a top decadal-survey priority in astronomy and astrophysics, but the mission has also undergone rigorous community, agency, and Congressional assessment and oversight and meets the high expectations of an astrophysics flagship."

Indeed, after Astro2010, scientific and technological advancements enabled an enhanced WFIRST that would be 100 times more powerful than Hubble. Follow-on National Academies' reports in 2013 and 2016 reaffirmed the significant scientific merit of the enhanced WFIRST mission, and their recommendations for careful monitoring of potential cost and schedule drivers led to NASA's commissioning of the WFIRST Independent External Technical / Management / Budget Review (WIETR) last fall.

Neither the commissioning of the WIETR nor the content of its findings are an indication that WFIRST is experiencing or will experience the cost overruns that the Webb telescope experienced. In fact, the opposite is true.

As Thomas Young, former director of NASA's Goddard Space Flight Center and former president and chief operating officer of Martin Marietta Corp., testified to the House Science Subcommittee on Space in December 2017, that WFIRST has undergone extensive scrutiny is "no cause for panic. What is transpiring is a perfectly healthy process to assure that the scope, cost, and risk are appropriately defined."

NASA's SMD Associate Administrator, Thomas Zurbuchen, fully agreed with the WIETR recommendations to match mission cost with appropriate resources as part of a balanced astrophysics portfolio.

After undergoing a redesign over the last several months, WFIRST would once again fit both within the February 2016 budget approved by NASA at the onset of its mission formulation phase and within the notional five-year budget profile the administration requested for NASA astrophysics in its FY 2018 budget less than one year ago. Put another way, the lifecycle cost for WFIRST is the same now as it was two years ago and has been described as both reasonable and credible by numerous review panels.

Marvel worries that the administration's proposal to scale back federal investment in the nation's exploration of the universe and terminate WFIRST risks undermining future decadal surveys and other community-based priority-setting processes.

"These efforts to achieve community consensus on research priorities are vital to ensuring the maximum return on public and private investments in the astronomical sciences," Marvel says. "The cancellation of WFIRST would set a dangerous precedent and severely weaken a decadal-survey process that has established collective scientific priorities for a world-leading program for a half century. Such a move would also sacrifice US leadership in space-based dark energy, exoplanet, and survey astrophysics. We cannot allow such drastic damage to the field of astronomy, the impacts of which would be felt for more than a generation."

The AAS will defend the important role of the decadal surveys in helping set federal spending priorities, to explain the scientific promise of the top-ranked WFIRST mission, and to share our excitement for the field of astrophysics, which has never been more ripe for discovery from the search for life elsewhere in the universe to understanding where we came from and where we're going. "We look forward to working with Congress to restore funding for WFIRST and for NASA astrophysics overall," Donahue concludes.

Wednesday, February 14, 2018

NASA's Continued Focus on Returning U.S. Human Spaceflight Launches

NASA's Commercial Crew Program and private industry partners, Boeing and SpaceX, continue to develop the systems that will return human spaceflight to the United States. Both commercial partners are undertaking considerable amounts of testing in 2018 to prove space system designs and the ability to meet NASA's mission and safety requirement for regular crew flights to the International Space Station. "The work Boeing and SpaceX are doing is incredible. They are manufacturing spaceflight hardware, performing really complicated testing and proving their systems to make sure we get it right." said Kathy Lueders, program manager NASA Commercial Crew Program. "Getting it right is the most important thing." Both Boeing and SpaceX plan to fly test missions without crew to the space station prior to test flights with a crew onboard this year. After each company's test flights, NASA will work to certify the systems and begin post-certification crew rotation missions. The current flight schedules for commercial crew systems provide about six months of margin to begin regular, post-certification crew rotation missions to the International Space Station before contracted flights on Soyuz flights end in fall 2019.


As part of the agency's normal contingency planning, NASA is exploring multiple scenarios as the agency protects for potential schedule adjustments to ensure continued U.S. access to the space station.

One option under consideration would extend the duration of upcoming flight tests with crew targeted for the end of 2018 on the Boeing CST-100 Starliner and SpaceX Crew Dragon. The flights could be extended longer than the current two weeks planned for test flights, and likely less than a six-month full-duration mission. The agency also is assessing whether there is a need to add another NASA crew member on the flight tests.

This would not the first time NASA has expanded the scope of test flights. NASA had SpaceX carry cargo on its commercial demonstration flight to the International Space Station in 2012, which was not part of the original agreement. This decision allowed NASA to ensure the crew aboard the space station had the equipment, food and other supplies needed on the station after the end of the agency's Space Shuttle Program.

As with all contingency plans, the options will receive a thorough review by the agency, including safety and engineering reviews. NASA will make a decision on these options within the next few months to begin training crews.

Tuesday, February 13, 2018

Mars Reconnaissance Orbiter preparing for years ahead

NASA's Mars Reconnaissance Orbiter (MRO) has begun extra stargazing to help the space agency accomplish advances in Mars exploration over the next decade. The spacecraft already has worked more than double its planned mission life since launch in 2005. NASA plans to keep using it past the mid-2020s. Increased reliance on a star tracker, and less on aging gyroscopes, is one way the mission is adapting to extend its longevity. Another step is wringing more useful life from batteries. The mission's extended service provides data relay from assets on Mars' surface and observations with its science instruments, despite some degradation in capabilities. "We know we're a critical element for the Mars Program to support other missions for the long haul, so we're finding ways to extend the spacecraft's life," said MRO Project Manager Dan Johnston of NASA's Jet Propulsion Laboratory, Pasadena, California. "In flight operations, our emphasis is on minimizing risk to the spacecraft while carrying out an ambitious scientific and programmatic plan." JPL partners with Lockheed Martin Space, Denver, in operating the spacecraft. In early February, MRO completed its final full-swapover test using only stellar navigation to sense and maintain the spacecraft's orientation, without gyroscopes or accelerometers. The project is evaluating the recent test and planning to shift indefinitely to this "all-stellar" mode in March.


From MRO's 2005 launch until the "all-stellar" capability was uploaded as a software patch last year, the spacecraft always used an inertial measurement unit - containing gyros and accelerometers - for attitude control. At Mars, the orbiter's attitude changes almost continuously, with relation to the Sun and other stars, as it rotates once per orbit to keep its science instruments pointed downward at Mars.

The spacecraft carries a spare inertial measurement unit. The mission switched from the primary unit to the spare after about 58,000 hours of use, when the primary began showing signs of limited life several years ago. The spare shows normal life progression after 52,000 hours, but now needs to be conserved for when it will be most needed, while the star tracker handles attitude determination for routine operations.

The star tracker, which also has a backup on board, uses a camera to image the sky and pattern-recognition software to discern which bright stars are in the field of view. This allows the system to identify the spacecraft's orientation at that moment. Repeating the observations up to several times per second very accurately provides the rate and direction of attitude change.

"In all-stellar mode, we can do normal science and normal relay," Johnston said.

"The inertial measurement unit powers back on only when it's needed, such as during safe mode, orbital trim maneuvers, or communications coverage during critical events around a Mars landing." Safe mode is a precautionary status the spacecraft enters when it senses unexpected conditions. Precise attitude control is then essential for maintaining communications with Earth and keeping the solar array facing the Sun for power.

To prolong battery life, the project is conditioning the two batteries to hold more charge, reducing demand on the batteries, and is planning to reduce the time the orbiter spends in Mars' shadow, when sunlight can't reach the solar arrays. The spacecraft uses its batteries only when it is in shadow, currently for about 40 minutes of every two-hour orbit.

The batteries are recharged by the orbiter's two large solar arrays. The mission now charges the batteries higher than before, to increase their capacity and lifespan. It has reduced the draw on them, in part by adjusting heater temperatures before the spacecraft enters shadow. The adjustment preheats vital parts while solar power is available so the heaters' drain on the batteries, while in shadow, can be reduced.

The near-circle of MRO's orbit stays at nearly the same angle to the Sun, as Mars orbits the Sun and rotates beneath the spacecraft. By design, as the orbiter passes over the sunlit side of the planet during each orbit, the ground beneath it is about halfway between noon and sunset. By shifting the orbit to later in the afternoon, mission managers could reduce the amount of time the spacecraft spends in Mars' shadow each orbit. NASA's Mars Odyssey spacecraft, older than MRO, successfully did this a few years ago. This option to extend battery life would not be used until after MRO has supported new Mars mission landings in 2018 and 2021 by receiving transmissions during the landers' critical arrival events.

"We are counting on Mars Reconnaissance Orbiter remaining in service for many more years," said Michael Meyer, lead scientist of NASA's Mars Exploration Program at the agency's Washington headquarters.

"It's not just the communications relay that MRO provides, as important as that is. It's also the science-instrument observations. Those help us understand potential landing sites before they are visited, and interpret how the findings on the surface relate to the planet as a whole."

MRO continues to investigate Mars with all six of the orbiter's science instruments, a decade after what was initially planned as a two-year science mission to be followed by a two-year relay mission. More than 1,200 scientific publications have been based on MRO observations. Teams operating the two instruments named most often in research papers - the High Resolution Imaging Science Experiment (HiRISE) camera and the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) mineral-mapper - are dealing with challenges but are ready to continue providing valuable observations.

For example, some HiRISE images taken in 2017 and early 2018 show slight blurring not seen earlier in the mission. The cause is under investigation. The percentage of full-resolution images with blurring peaked at 70 percent last October, at about the time when Mars was at the point in its orbit farthest from the Sun. The percentage has since declined to less than 20 percent. Even before the first blurred images were seen, observations with HiRISE commonly used a technique that covers more ground area at half the resolution. This still provides higher resolution than any other camera orbiting Mars - about 2 feet (60 centimeters) per pixel - and little blurring has appeared in the resulting images.

Using two spectrometers, CRISM can detect a wide range of minerals on Mars. The longer-wavelength spectrometer requires cooling to detect signatures of many minerals, including some associated with water, such as carbonates. To do this during the two-year prime science mission, CRISM used three cryocoolers, one at a time, to keep detectors at minus 235 Fahrenheit (minus 148 Celsius) or colder. A decade later, two of the cryocoolers no longer work. The last has become unreliable, but is still under evaluation after 34,000 hours of operation. Without a cryocooler, CRISM can still observe some near-infrared light at wavelengths valuable for detecting iron oxide and sulfate minerals that indicate past wet environments on Mars.

The Context Camera (CTX) continues as it has throughout the mission, adding to near-global coverage and searching for changes on the surface. The Shallow Radar (SHARAD) continues to probe the subsurface of Mars, looking for layering and ice. Two instruments for studying the atmosphere - the Mars Color Imager (MARCI) and Mars Climate Sounder (MCS) - continue to build on nearly six Mars years (about 12 Earth years) of recording weather and climate.

Sunday, February 11, 2018

All-in-one service for the Space Station

Quick access to space, high-speed data feed and a unique vantage point are the selling points of a new commercial venture on the International Space Station. Its name is Bartolomeo, and its versatile design allows for many mission types at competitive prices from next year.The Space Station has been growing in size during the past 20 years, and so have the number of platforms dedicated to science in orbit. However, researchers and engineers are finding it harder to acquire slots for their experiments. A decade after its launch, Europe's Columbus laboratory makes room on the outside to a new platform that offers an affordable, quick and easy access to space. Bartolomeo aims to attract new European users to the Station, including a community of start-ups and space entrepreneurs. As companies piggyback off existing Station resources to reduce cost, new commercial opportunities will arise. Earth observation and telecommunications, exobiology and space weather research are areas of great demand that will benefit. The Bartolomeo All-in-one Mission Service will provide end-to-end access for external payloads on the Station. It provides unobstructed view of Earth, direct control of the experiments from the ground and the possibility of retrieving samples.


Today, ESA and Airbus Defence and Space signed a commercial partnership that will make Bartolomeo a reality next year. While the European company funds the development and promotes commercialisation, ESA will support the launch, installation and operations.

This is the first time that a European commercial partnership is offering the opportunity to carry out science and demonstrate technology outside the Station.

Out of the box

The Bartolomeo platform, named after the younger brother of Christopher Columbus, will be mounted on the forward side of Columbus, 400 km above Earth. Users will enjoy a data downlink capacity of 10 Gbit/s - enough to download a high-definition movie within 30 seconds.

The formula for payload size is flexible. Users can squeeze in as little as 5 kg by sharing the ride with other experiments, or have an entire slot of up to 450 kg at their disposal.

Bartolomeo offers 11 slots, and the waiting time from the moment a contract is signed and the 'go for flight' is one to two years - much shorter than the standard timeframe for experiments. The rental agreement in space is for a minimum of one year.

Bartolomeo is set for launch in 2019 on a SpaceX Dragon cargo ferry.

Friday, February 9, 2018

New Horizons captures record-breaking images in the Kuiper Belt

NASA's New Horizons spacecraft recently turned its telescopic camera toward a field of stars, snapped an image - and made history. The routine calibration frame of the "Wishing Well" galactic open star cluster, made by the Long Range Reconnaissance Imager (LORRI) on Dec. 5, was taken when New Horizons was 3.79 billion miles (6.12 billion kilometers, or 40.9 astronomical units) from Earth - making it, for a time, the farthest image ever made from Earth. New Horizons was even farther from home than NASA's Voyager 1 when it captured the famous "Pale Blue Dot" image of Earth. That picture was part of a composite of 60 images looking back at the solar system, on Feb. 14, 1990, when Voyager was 3.75 billion miles (6.06 billion kilometers, or about 40.5 astronomical units [AU]) from Earth. Voyager 1's cameras were turned off shortly after that portrait, leaving its distance record unchallenged for more than 27 years. LORRI broke its own record just two hours later with images of Kuiper Belt objects 2012 HZ84 and 2012 HE85 - further demonstrating how nothing stands still when you're covering more than 700,000 miles (1.1 million kilometers) of space each day.


Distance and Speed

New Horizons is just the fifth spacecraft to speed beyond the outer planets, so many of its activities set distance records. On Dec. 9 it carried out the most-distant course-correction maneuver ever, as the mission team guided the spacecraft toward a close encounter with a KBO named 2014 MU69 on Jan.

1, 2019. That New Year's flight past MU69 will be the farthest planetary encounter in history, happening one billion miles beyond the Pluto system - which New Horizons famously explored in July 2015.

During its extended mission in the Kuiper Belt, which began in 2017, New Horizons is aiming to observe at least two-dozen other KBOs, dwarf planets and "Centaurs," former KBOs in unstable orbits that cross the orbits of the giant planets.

Mission scientists study the images to determine the objects' shapes and surface properties, and to check for moons and rings. The spacecraft also is making nearly continuous measurements of the plasma, dust and neutral-gas environment along its path.

The New Horizons spacecraft is healthy and is currently in hibernation. Mission controllers at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, will bring the spacecraft out of its electronic slumber on June 4 and begin a series of system checkouts and other activities to prepare New Horizons for the MU69 encounter.

Wednesday, February 7, 2018

Final request for proposal released for Air Force launch services contract

The Air Force released a final Request for Proposal for Evolved Expendable Launch Vehicle (EELV) Launch Services for the following payloads: National Reconnaissance Office Launch (NROL)-85, NROL-87, SILENTBARKER, Space-Based Infrared System Geosynchronous Earth Orbit (SBIRS GEO)-5, and Air Force Space Command (AFSPC)-44. The final RFP was released on Jan. 31 with proposals due back to the Air Force on April 16 in accordance with the solicitation instructions. The contracts for these launch services are expected to be awarded in late 2018.The Air Force will award firm-fixed-price contracts that will provide the government with a total launch solution for these missions. The award includes launch vehicle production, mission integration, and launch operations. The Air Force's acquisition strategy for this solicitation achieves a balance between meeting operational needs and lowering launch costs by reintroducing competition for National Security Space missions. This is the sixth competitive launch service solicitation under the current Phase 1A procurement strategy.


"The Air Force utilizes a combination of source-selection techniques from across the best-value continuum that are tailored for each individual mission," said Lt. Gen. John Thompson, Space and Missile Systems Center commander.

"This solicitation incorporates a tradeoff between past performance, performance and schedule sub-factors, and price to maintain a focus on mission success for these critical payloads."

SBIRS GEO-5 and AFSPC-44 are planned to be launched from Cape Canaveral Air Force Station or Kennedy Space Center in FY 2021. NROL-87 is planned to be launched from Vandenberg Air Force Base in FY 2021.

NROL-85 can be launched from the Eastern or Western Range and is planned to be launched in FY 2021. SILENTBARKER is planned to be launched from Cape Canaveral Air Force Station or Kennedy Space Center in FY 2022.

The Air Force Space Command's Space and Missile Systems Center, located at Los Angeles Air Force Base, California, is the U.S. Air Force's center of excellence for acquiring and developing military space systems.

Its portfolio includes the Global Positioning System, military satellite communications, defense meteorological satellites, space launch and range systems, satellite control networks, space-based infrared systems, and space situational awareness capabilities.

Tuesday, February 6, 2018

Hubble Delivers First Insight Into Atmospheres Of Potentially Habitable Planets Orbiting Trappist-1

An international team of astronomers has used the NASA/ESA Hubble Space Telescope to look for atmospheres around four Earth-sized planets orbiting within or near TRAPPIST-1's habitable zone. The new results further support the terrestrial and potentially habitable nature of three of the studied planets. The results are published in Nature Astronomy. Seven Earth-sized planets orbit the ultracool dwarf star TRAPPIST-1, 40 light-years away from the Earth. This makes TRAPPIST-1 the planetary system with the largest number of Earth-sized planets discovered so far. These planets are also relatively temperate, making them a tantalizing place to search for signs of life beyond our Solar System. Now, an international team of astronomers has presented a study in which they used the NASA/ESA Hubble Space Telescope to screen four planets in the system - TRAPPIST-1d, e, f and g - to study their atmospheres. Three of the planets orbit within the system's habitable zone, the region at a distance from the star where liquid water - the key to life as we know it - could exist on the surface of a planet. The fourth planet orbits in a borderline region at the inner edge of the habitable zone. The data obtained rule out a cloud-free hydrogen-rich atmosphere for three of the planets - but for the fourth planet, TRAPPIST-1g, such an atmosphere could not be excluded.



Lead author Julien de Wit, from the Massachusetts Institute of Technology, USA, describes the positive implications of these measurements: "The presence of puffy, hydrogen-dominated atmospheres would have indicated that these planets are more likely gaseous worlds like Neptune. The lack of hydrogen in their atmospheres further supports theories about the planets being terrestrial in nature. This discovery is an important step towards determining if the planets might harbour liquid water on their surfaces, which could enable them to support living organisms."

The observations were made while the planets were in transit in front of TRAPPIST-1. In this configuration a small section of the star's light passes through the atmosphere of the exoplanet and interacts with the atoms and molecules in it. This leaves a weak fingerprint of the atmosphere in the spectrum of the star.

While the results rule out one type of atmosphere, many alternative atmospheric scenarios are still consistent with the data gathered by de Wit and his team. The exoplanets may possess a range of atmospheres, just like the terrestrial planets in our Solar System.

"Our results demonstrate Hubble's ability to study the atmospheres of Earth-sized planets. But the telescope is really working at the limit of what it can do," adds co-author Hannah Wakeford from the Space Telescope Science Institute, illustrating both the power and limitation of Hubble.

These latest findings complement the analysis of ultraviolet observations made with Hubble in 2017 (heic1713) and help us understand more about whether life might be possible in the TRAPPIST-1 system.

By ruling out the presence of a large abundance of hydrogen in the planets' atmospheres, Hubble is helping to pave the way for the NASA/ESA/CSA James Webb Space Telescope.

"Spectroscopic observations of the TRAPPIST-1 planets with the next generation of telescopes - including the James Webb Space Telescope - will allow us to probe deeper into their atmospheres," concludes Michael Gillon, from the University of Liege, Belgium.

"This will allow us to search for heavier gases such as carbon, methane, water, and oxygen, which could offer biosignatures for life."

Friday, February 2, 2018

Long March 2D launches Zhangheng-1 Earthquake investigator

A Long March 2D has conducted the sixth Chinese launch of 2018, with the lofting of the Zhangheng-1 spacecraft, a new research satellite for the observation of ionospheric precursors of earthquakes. The launch took place at 07:51 UTC on Friday from the 94 Launch Platform at the LC43 Launch Complex from the Jiuquan Satellite Launch Center (JSLC). An additional six small satellites rode along with the primary payload. The Zhangheng-1 (ZH-1) – also known as China Seismo-Electromagnetic Satellite (CSES) – was developed by the Chinese Academy of Space Technology (CAST) and is based on the CAST2000 bus. The satellite will be operated by China National Space Administration (CNSA) together with the China Earthquake Administration and the China National Space Administration in cooperation with the Italian Space Agency (ASI). ZH-1 carries six instruments to measure the electromagnetic effects of earthquakes above 6 magnitude in China and quakes above magnitude seven all over the world. On board the satellite is the High-Energy Particle Detector (HEPD) to detects protons and electrons, measuring the flow of protons and electrons in short-term disturbances in the radiation belt whether caused by terrestrial, solar or anthropic phenomena; the Search-coil magnetometer (SCM) that will measure fluctuations in the magnetic field of the ionosphere and the Electric Field Detector (EFD) to measure the variation of the ionosphere electric field due to disturbances from solar, seismic and anthropic phenomena.




Also included is the High-Energy Particle Package (HEPP), composed of three instruments designed to measure high energy particles (a solar x-ray detector, a high-energy detector and a low-energy detector); a Langmuir Probe to examine the parameters of the ionosphere in real time and on site together to the coupling of the ionosphere and the lithosphere before, during and after an earthquake occurs; the High-Precision Magnetometer (HPM) to take measures based on the spectroscopy of two photons of free alkaline atoms; and a plasma analyser to measure the density, composition, temperature and drift velocity of the ions of which the plasma is composed to check the coupling between ionosphere and seismic.

Also onboard is a GNSS Occultation Receiver to measure the total electron content and obtain the vertical density of electrons, and a beacon that will operate in three bands that will allow transmission in VHF / UHF / L-band, also measuring ionospheric irregularities in the three bands for transmission from space to the ground.

The lithosphere-atmosphere-ionosphere coupling is a complex subject involving many physical effects and interactions that occur from the Earth surface up to the magnetosphere. The investigation of such coupling mechanisms – and in particular of the, partially unknown, behavior of the iono-magnetosphere transition region – is of fundamental importance for Earth remote sensing, monitoring of the near-Earth electromagnetic environment and studying of natural hazards.

A great part of these effects is caused by natural non-seismic and anthropogenic electromagnetic emissions, but of particular relevance are the electromagnetic disturbances associated with the seismic activity that can produce ionospheric perturbations as well as the precipitation of particles from the Van Allen belts, observed before, during and after earthquakes of medium and strong magnitude.

All of these phenomena must be distinguished from those induced by sources external to the geomagnetic cavity and by atmospheric events. In fact, an important role in controlling the dynamic of the topside ionosphere is played by the Sun – that generates (regular and irregular) variations of the lithosphere-ionosphere-magnetosphere parameters by impulsive events as solar Coronal Mass Ejections and Solar Flares – as well as by tropospheric activity (lightning, TLE, etc.)

The CAST 2000 is a compact satellite platform characterized by its high performance, expandability and flexibility.

It is fitted with an S-band TT&C sub-system, X-band data transmission sub-system and 3-axis attitude stabilization, and is able to offer highly precise control, large-range sway and flexible orbit control, highly integrated housekeeping and a highly efficient power supply.

This platform has already been successfully applied in several Chinese small satellites, including the Huanjing-A, B satellites, and its performance and reliability have proven to be excellent.

This platform is also capable of operating in low, medium and high orbits, and has a life span of more than three years. The CAST 2000 bus mass is between 200 – 400 kg and the payload capability is between 300 – 600 kg. The satellite has a 3-axis stabilization and a sway attitude control capability.

In general, the platform can be used for Earth observation, technology demonstration, scientific exploration, Earth environmental exploration, meteorological research and application, communications and navigation.

Riding along Zhangheng-1 were six small satellites: GomX-4A (Ulloriaq) and GomX-4B, Fengmaniu-1, Shaonian Xing, and the ÑuSat-4 ‘Ada’ (Aleph-1 4) and ÑuSat-5 ‘Maryam’ (Aleph-1 5).

GomX-4A (Ulloriaq) and GomX-4B will test intersatellite communication links and propulsion while orbiting up to 4500 km apart. The two satellites are based on the CubeSat models that are nanosatellites based on standardized 10×10 cm units. GomX-4B is a ‘6-unit’ CubeSat, double the size of its predecessor GomX-3, which was released from the International Space Station in 2015.


The two small satellites will test intersatellite link technology, routing data from one satellite to the other, then down to the ground station. Part of the ground testing ensured they could indeed talk to each other and the actual ground station on an end-to-end basis.

After separation from the second stage of the Long March-2D rocket, the two satellites will first orient themselves to align their antennas. Then GomX-4B will gradually fly away from its counterpart, pausing at around 100 km intervals with their intersatellite links activated to see how well they work. Their separation will be controlled by new cold-gas propulsion on GomX-4B contributed by Sweden’s NanoSpace company, using highly miniaturized thrusters.

The satellites will maintain their links through flat, patch antennas and software-controlled radios at a maximum distance of some 4500 km – a limit being set by the operating concept of a minimum of 10 satellites equally spaced around the same orbital plane to form a future constellation.

Apart from operating together, the two satellites have separate payloads. GomX-4B is the first CubeSat to fly the new HyperScout hyperspectral imager, developed by cosine Research in the Netherlands through ESA’s General Support Technology Programme. Hyperscout images Earth in 45 different spectral bands, gathering a wealth of environmental data. The amount of data will be immense, that the camera must perform its own processing to drastically reduce the amount needing to be sent back to the ground.

GomX-4B also carries a new small startracker for precise attitude determination developed by Innovative Solutions in Space in the Netherlands, an ESA test payload checking components’ susceptibility to space radiation, and a dedicated radio receiver to detect signals from worldwide air traffic.

GOMX-4A was built by GOMSpace for the Danish Ministry of Defence and also build GOMX-4B for ESA, but under another contract.

Fengmaniu-1 (FMN-1) is a three-unit CubeSat developed by Link Space Aerospace Technology for scientific education and technology demonstration. FMN-1 main mission will be to test new components like two cameras in space serving also as a repeater for amateurs worldwide via the onboard transponder system with a FM repeater uplink 145.945 MHz and a FM repeater downlink and telemetry 435.350 MHz, 9k6 BPSK AX25. Launch mass is 3 kg.

Shaonian Xing (also known as Youth Star) is a three-unit CubeSat developed by Chinese students as part of the Sat-China outreach project to engage youth in thinking about space, STEAM education, and even satellite development. Launch mass is 2 kg.

The Shaonian Xing resulted from an initiative organized by China Soong Ching-ling Foundation, by the China Association for Science and Technology, and by the Chinese Education Society.

The Argentinian ÑuSat-4 ‘Ada’ (Aleph-1 4) and ÑuSat-5 ‘Maryam’ (Aleph-1 5) satellites are part of the Aleph-1 constellation that is being developed and operated by Satellogic S.A..

The Aleph-1 constellation will consist of up to 25 satellites.

The two satellites are almost identical to each other and have a mass of 37 kg, with dimensions 450mm x 450mm x 800mm. The primary objective of the mission is to commercially provide earth observation images to the general public in the visible and infrared parts of the spectrum.

Both satellites are equipped with cameras operating in visible light and infrared and will operate in 500 km SSO orbit with inclination at 97.5 degrees.

ÑuSat-4 is designated ‘Ada’ in honor of Ada Lovelace, an English mathematician and writer, chiefly known for her work on Charles Babbage’s proposed mechanical general-purpose computer. ÑuSat-5 is designated ‘Maryam’ in honor of Maryam Mirzakhani, an Iranian mathematician and a professor of mathematics at Stanford University. Her research topics included Teichmüller theory, hyperbolic geometry, ergodic theory, and symplectic geometry.

The Long March-2D (LM-2D) launch vehicle is a two-stage rocket developed by the Shanghai Academy of Spaceflight Technology. With storable propellants is mainly used to launch a variety of low earth orbit satellites.

The development of LM-2D was started in February 1990. From 2002, to meet the demand of SSO satellites, the payload fairing of 3350mm in diameter and attitude control engine for the second stage have been successfully developed; and the discharge of remaining propellant and de-orbit of the second stage have been realized. This launcher is mainly used for launching LEO and SSO satellites.

It is characterized by high reliability, wide application and mature technology.

The LM-2D can launch a 1,300 kg cargo in a 645 km SSO. The rocket is 41.056 meters long and the first, second stages and payload fairing are all 3.35 meters in diameter.

The first stage is the same of the Long March-4.

The second stage is based on LM-4 second stage with an improved equipment bay. Lift-off mass is 232,250 kg, total length 41,056 meters, diameter 3.35 meters and fairing length 6.983 meters. At launch, it develops 2961.6 kN engine thrust.

The first stage has a 27.910 meter length with a 3.35 meter diameter, consuming 183,200 kg of N2O4 / UDMH (launch mass of the first stage is 192,700 kg). Equipped with a YF-21C engine capable of a ground thrust of 2,961.6 kN and a ground specific impulse of 2,550 m/s. Burn time is 170 seconds.

The second stage has a 10.9 meter length with a 3.35 meter diameter, launch mass of 39,550 kg and consuming 45,550 kg of N2O4 / UDMH. Equipped with a YF-24C cluster engine with a main engine vacuum thrust of 742.04 kN and a vernier engine with a vacuum thrust of 47.1 kN (specific impulses of 2,942 m/s and 2,834 m/s, respectively).

The LM-2D can use two types of fairings depending on the cargo. Type A fairing has a 2.90 meters diameter (total launch vehicle length is 37.728 meters) and Type B fairing with a diameter of 3.35 meters – total launch vehicle length is 41.056 meters.
Launch profile of the Long March-2D starts with engine ignition at 1.2 seconds before lift-off. Pitch over maneuver happens at 12 seconds into the flight and the end of the first stage ignition occurs at two minutes 33 seconds. Stage separation and second stage ignition occur one second latter. At 3 minutes 34 seconds the two parts of the fairing separate from the second stage.

Second stage main engine cut-off takes place at 4 minutes 21 seconds and second stage Vernier engines cut-off takes place at 9 minutes and 10 seconds. Nominally payload separation takes place three seconds later.

The first launch of the LM-2D was on August 9th, 1992 from the Jiuquan Satellite Launch Center orbiting the Fanhui Shei Weixing FSW-2-1 (22072 1992-051A) recoverable satellite.

The Jiuquan Satellite Launch Center, in Ejin-Banner – a county in Alashan League of the Inner Mongolia Autonomous Region – was the first Chinese satellite launch center and is also known as the Shuang Cheng Tze launch center.

The site includes a Technical Centre, two Launch Complexes, Mission Command and Control Centre, Launch Control Centre, propellant fuelling systems, tracking and communication systems, gas supply systems, weather forecast systems, and logistic support systems.

Jiuquan was originally used to launch scientific and recoverable satellites into medium or low earth orbits at high inclinations. It is also the place from where all the Chinese manned missions are launched.

The LC-43 launch complex, also known as South Launch Site (SLS) is equipped with two launch pads: 91 and 94. Launch pad 91 is used for the manned program for the launch of the Long March-2F launch vehicle (Shenzhou and Tiangong). Launch pad 94 is used for unmanned orbital launches by the Long March-2C, Long March-2D and Long March-4C launch vehicles.

Other launch zones at the launch site are used for launching the Kuaizhou, Kaituo and the Long March-11 solid propellant launch vehicles.

The first orbital launch took place on April 24, 1970 when the Long March-1 rocket launched the first Chinese satellite, the Dongfanghong-1 (04382 1970-034A).